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Mirror symmetry of
Bershadsky-Cecotti-
Ooguri-Vafa (BCOV)

String theory formulation, emphasis on
genus one.



» Mathematical mirror symmetry is a
(largely) conjectural framework working

M] 'ror with Calabi-Yau manifolds.
symmetry

» Calabi-Yau manifold: X projective
manifolds of dim n admitting a non-
vanishing holomorphic top-form 7.

1. e.g.abelian varieties.

2. hypersurfaces of degree n + 2 in
projective space of dimn + 1.




» Should relate two types of data on
"mirrored” pairs of Calabi-Yau manifolds:

< (A-side) Symplectic variations:

M] r'ror = Curve counting on a Calabi-Yau manifold

symmetry "

< (B-side) Holomorphic variations:

= Invariants built from a holomorphic
"mirror family” of Calabi -Yau

manifolds X — D*.
(mirrors have mirrored Hodge

diamonds)

» Should relate it via a mirror map between
the two sides.




Projection of
Calabi-Yau of
dim 3




» Fix Calabi-Yau manifold X, complexified Kahler cone:

Hy = Hg'(X)/Hy  (X) + iK
(K = Kahler cone).

A-side

» Curve counting : Gromov-Witten invariants.

» Defined by integrating over a (virtual) fundamental class of
genus g stable maps € — X landing in fixed f € H, (X, Z).

lectic sid : ot
(symplectic side) » For hypersurfaces in projective space,

H,(X,Z)=H,(P"*1,Z)=Z, and f is the degree of the image of C
in projective space.

IfdimX = 3 or g = 1, the above (virtual) fundamental class is
zero-dimensional, and we can count:

Ny = Nog(X) = deg ([, x, )]




» BCOV ("94) organized this into a formal power series. Let
g = 1 from now on.

A-side

Nio(X) T+ z N1,/3(X)qﬁ-

(symplectic side) B curve class

> qﬁ = exp(2mi (B, 1))
» T € Hy.

Denote the series by F; 4(X,7) = F; 4 (7)




» Will often consider MUM families of CYs
of dimension n:

1. f:X — D* over the punctured
multidisc D* = (D*)<.

2. Cannot be deformed in other directions

. 3. Of maximal unipotent monodrom
B-side p y

(MUM)
(holomorphic side)

The last point means that the monodromy

operator has the largest possible Jordan
B-side of the story is often interpreted as blocks

varations of Hodge structures (or complex), Mp.

Informally a cusp in a moduli space of
Calabi-Yau varieties:

D* € Mp.




» (Morrison) In "MUM” situation, with D* =
"mirror map” as quotient of two (carefully p

Mirror map: e

YT

» RHS should be in Hy, but it is one-dimensional
setting and we think of it as part of C.

B - A -M Od el » Sometimes exponentiate:

Y - q = exp(2mit),

D* - D~

Think of it as a natural coordinate change.




» BCOV ('94) predicts the existence of C®
real valued function, in dimension 3,
%1;3 on D*.

» &1p should satisfy a type of differential

B-side, génus One, equation, the holomorphic anomaly
general dimension equation.

h l h d » ”
(holomorphic side) » &1 should "know” about F; 4, ona

mirror.

» Gave a definition in terms of
holomorphic analytic torsion.




» On acompact Kahler manifold
(X, w), Kodaira-Laplace operator:

A=00 +0 0actson AP (X), with pos.
eigenvalues A,

(Holomorphic) 1
Analytic a®= ), 5
torsion |

» The holomorphic analytic (or
holomorphic Ray-Singer) torsion:

T(Q% ) = exp (Z(—lwlq c'p,q(o».)




BCOV torsion




Example: One-
ﬂ dimensional case
o E, = C/Z+ 1T

(mirror map is
the identity)




O N e B » Ny4(E) = topological coverings of degree d

. ° » o(d) = Y4k, the number of subgroups of Z? of
dimensional ndexd. "
case Ny a(E) = o(d) /d.
1 d
Fi1.4(q) = _2_111qu + Z%qd
= ﬁlogA
( DeSC r] pt] On Of A(T) = q[[(1 — g™)?*, q = exp(2miT)

A-side)

at+ b
_ 12
A (CT n d> = (ct + d)“A(7),

modular form of weight 12 for SL,(%Z)




One-

o o » The {,,1(s) for C/(Z + tZ) (standard metric) is, up to
dimensional some factor
Im(7)s
E(t,s) = z
C a S e In + mt|?S

sum over Z? 3 (m,n) # (0,0)

(Description of 2 E@s)|_ =3l083(X,0)
B-side)




One-
dimensional
case

(Description of
B-side)

» Not difficult to derive the equation:

0* (1 SE. o)) =
0z 0z \2 B @)=

(holomorp
equation'in
dimensional

8Im(7)?

» Easy computation shows that all solutions of
this type of equation are of the form

~log (vVIm(@) I£1)

for a holomorphic function f on H.

SL(Z) acts by holomorphic isomorphisms on
H which implies that =log J(E;, w) transforms as a

. 2 1
modular form, and implies |f| transforms as a
modular form.

f12 transforms as a modular form of weight 12.

One finds the first Klronecker limit1 formula:
F1p(E) =C+ Eloglm(r) + ﬁloglM
|A|l = exp(—24F; 4(E;))



The mirror conjecture statement at genus one




What is
known?

The case of dimension one was sketched.

In dimension two, Calabi-Yau manifolds are K3 surfaces or
abelian varieties. All the invariants are zero or trivial.

For quintic threefolds this is a result of Fang-Lu-Yoshikawa.




» In the previous example we used a "standard me
elliptic curve.

Mathematical
d ef] N ] t] on Of » The ”"BCOV torsion” depended on the choice of

metric/Kahler form, so is not only a function in

he B-
%}1, B model.




The BCOV invariant




» We thus propose
1

818 = Elog Tpcov -

» Most known approaches to the BCOV conjecture is as follows:

1. Study boundary behavior of T5-gy .

2. Use geometry of some appropriate moduli spaces to write Tz in a simple way.

3. Inthe previous 1-dimensional case one could use the modularity to draw
conclusions.




Remarks

» C(Call it the BCOV invariant. Generalizes known constructions in
dimension 3 by Fang-Lu-Yoshikawa (2008).

» Used to prove BCOV conjecture for quintic 3-fold.

» The case c;(X) = 0 was discovered recently by Yeping Zhang
(2019).




Some questions
about the
boundary
behaviour



» Existskr € Q, such that

log tpcov (Xy) = Krlogly|? + o(logly|?).

» Have general formulas for x; in the case of normal
crossings degenerations.

X —->D
1-parameter
proj. family of

degenerating
CY:s+e

(CDG)




log tpcov (Xy) = Krlogly|? + o(logly|?).

For projective families of abelian varieties of dimension
at least 2 and hyperkahler varieties, (1) is constant,
reflecting the same behaviour on the A-side.

In general we get topological constraints on the special
fiber of such degenerations.

X —->D
1-parameter
proj. family of

degenerating
CY:s +e€

(CDG)




» Suppose f: X = D has at worst ODP singularities at the origin.
Then,

if n is odd, Kp = nz—:l#Sing(Xo).
If nis even, Kp = 22_—4n#Sing(X0).

» Ifn = 3, this was one of the main results of Fang-Lu-Yoshikawa
(2008).

» Ifn = 4, this was conjectured by Klemm-Pandharipande (2008).

» This was also conjectured by Fang-Lu-Yoshikawa for the BCOV
torsion), and is related to "universal behaviour of F; p close to
conifold points” in the theoretical physics litterature.

X —->D
1-parameter
proj. family of

degenerating
CY:s +e€

(CDG)




A mathematical formulation of the
conjecture



Grothendieck-Riemann-Roch

» f:X — S family of Calabi-Yau manifolds. Define:
f+Kx s = direct image of relative canonical bundle

(-1Pp
Acov(f) = Agcov = ® (dethf* ‘QI;C/S)

b.q

» The Grothendieck-Riemann-Roch implies that the cohomology classes of
X
Agcoyv and (f*Kx/S)®12 are the same.

» The bundles are hence isomorphic (or some power thereof), but such an
isomorphism is not unique.




» f:X — S family of complex manifolds

»  f.Kx/s carries natural L?> —norm:

.02
ln

2" fan AT

Inl? @) =

Metrics Agcov (X) =Q,,q det HP,CI(X)(—l)qu

HP4(X) = ker AP'? harmonic forms. Have
natural L? norm.

The corresponding metric on Az (X) can
be modified so that it doesn’t depend on an
auxiliary Kahler form.




C.Soule

» There are metrized versions of the
Grothendieck-Riemann-Roch theorem:
arithmetic Riemann-Roch theorem, due to
Gillet-Soulé.

» States that the two bundles are isometric,

H. Gillet in a way which is unique up to
multiplication by modulus one scalar. Fix
this:

QL
GRR: Agcoy — (f*KX/S) 12
Ar] th metic » Will provide us with the link between

BCOV formulation and our formulation.

Riemann-Roch '92.




®l
GRR: Apcov < (fiKxs) '
» Letn be a trivializing section of f, Ky /s.

Then, up to an explicit factor,

IGRR(1)|%

_ o TBcov(xw) =
Arithmetic Riemann-Roch Inl%/°

theorem

(a special case of)

In the case of elliptic curves, this relationship is known as the (first)
Kronecker limit formula, responsible for the mirror symmetry statement
earlier.




IGRR(1)|72

6
Il

» Ifn'is atrivializing section of Agoy, define holomorphic F on S such that

TBCOV(Xw) -

GRR
o ,(n)
n
I’}
Tscov(Xy) = IFI? |77|XL/6
L2

» 1’ of Agcov
» nof fiKxys

» These two sections are not given, must be constructed.




Genus one mirror symmetry formulation

» When f: X - D* in the MUM situation (maximal unipotent monodromy) there are
natural sections

1. T” Of}{‘BCOV
2 nof fiKy/s
|ﬂ'|iz

6’
%

4 ertlng TBCOV(‘XI/)) = |F|2

we have |F| = C|exp((—1)"24F; 4(z(¥)))|-

Notice that the expression F; ,(7(1)) involves the mirror map/coordinate.




Hypersurfaces
in projective

space

evidence in higher dimensions




» Calabi-Yau hypersurface X,,,, € P"*!

Hypersurfaces
. . . » Interested in studying the mirror symmetry statements i
In projective this case

space

» For mirror quintics in P°, goes back to Fang-Lu-Yoshikawa
in 2008.




Constructing mirror family

» X - P!, where fory € P!, X;, = {F¢ =0},

Fll) == le?H_z - Il)(n + Z)xo ...xn+1

» The group p,,,, acts on each coordinate.

» Let G be the group of such roots of unity which preserving x; ... x,, ;1. [t acts on
X - PL

» Yy = Xy/G has simple singularities, Y # oo, admits a (crepant ) resolution Z, —
Y-

» After desingularizing everywhere, provides a family Z - P!,




Geometry of
mirror family
7 — Pt

» 1) = oo, semi-stable point (MUM point).

> P =&, &2 = 1, single ODP singularity on Zy.

» Y = anything else, normal smooth point.

» A neighborhood of oo "is” the mirror family in the
previous sense.



» The mirror conjecture holds, up to
constant, for hypersurfaces in projective
space.

Strategy of proof:

The mirror conjecture holds, up 1. Compute F using algebraic sections and
' arithmetic Riemann-Roch.
to constant.

2. Modify the sections to fit the mirror
symmetry setting.




Construction of the algebraic
sections

X->X/G«Z
the cohomology of Zy, ~ G-invariant part of the cohomology of X;,.

» Generally more complicated, but can construct enough sections "by
hand” from P"**1, to obtain n,17’.

» Example:
HQ
n = Res (i—) € H"'O(X¢)G )

Y
Q=Y(—Dixdxg ...dx;dx, 1, H = Xg .. Xpsq

Taking derivatives (Kodaira-Spencer) produces enough sections to write
down n’.




How to compute F

712
» Recall arithmetic Riemann-Roch: tzcoy = |F|? —ln ||L|2XP}gOV
nl72
1 X ,
5logTpcov + 5 loglnl 2 —logln’l 2 gooy =10g |F|

2 12

» Want to:

»  determine F = [[(}) — a)™?, since F is just a rational function on P,

»  Hence, for a € P1,
1 X ,
ElogTBCOV + E108|77|L2 - 108|77 |L2 gcov — Na logll/} - al + O(log |¢ - al)

» Sincedegdiv F = )n, = 0, itis enough to control all points except a = oo.



For a € P!, want to control n, i.e. the asymptotic behavior close to a :

X

-1
08 Tpcov T 12

> log|nl,z —1og|n'l 2 geoy = Nalogly — al + o(log |y — a|)

Outside of ODP's everything is trivial.

log Tgcoy close to ODP points was recalled earlier.




» Theorem (CDG): Close to a € P?,

>logln'l,2 = a’logly — al + o(log [y — al)
»log|nl2 = alogly —al + o(log |y —al)

Asymptotic
behavior

» These can be expressed in terms of
monodromy eigenvalues, and is part of a
refinement of Schmid’s nilpotent orbit
theorem.




Conclusions

» We hence control the logarithmic
behaviour of

1 log Tgcov (le)
2. log|n'|;2 ,log|nl ;2

around all points except iy = co. Some delicate
computations later, one finds an expression

(n+2)a
F@) = €2

(1 — ¢n+2)b
Where, C € R,

nn+1) B x(Zy)

6 12(n + 2)
n(3n — 2

24

a=((—1D"

b=(-1)"




» The computation is based on:

1. Direct computations of limiting
mixed Hodge structures,

2. Numerical tricks involving the
Yukawa coupling at infinitywhich is
supposed to be controlling genus 0
Gromov-Witten invariants in
dimension 3.




» The weight filtration on the limiting mixed
Hodge structure at infinity:

Wo EWy =W, € € Wop_q = Way = Hjppy

MOd ] fy th e » Theorem(CDG): Fix a basis y. of

\%
: (H},!) adapted to the weight filtration.
SeCt] ons There is a unique holomorphic basis 7.

adapted to the Hodge filtration on R* " 1£,C
such that

. _(0,k<p
1. fyknp_{l’kzp}

2. 1]. extends to a basis of the “canonical”
extension of R™f,C in a neighborhood of co.




» The basis 7. is of a more transcendental
nature than n,n,

SeCt] ons » Only defined in a neighborhood of .
» One can pass from one to the other by
ad d pted to t h e dividing by a lot of periods. We can
. fabricate periods by solving Picard-Fuchs
mirror equations and using some tricks.
S] t ua t] on » This leads to a complicated expression.

» Was related to Gromov-Witten invariants
of the mirror by Zinger, '08.




Theorem (CDG)

CDG

(case in dimension 3 is due to Fang-Lu-
Yoshikawa)




Main theorem (CDG): The
| mirror conjecture holds
/ for hypersurfaces in projective
’ space

v ' « .
l »In other words, the “analytic
torsion” contains information about

genus one Gromov-Witten
L n invariants on the mirror, and can be
’ understood through “arithmetic
Riemann-Roch”.




Thank you for
your attention

\




» Gross-Deligne: If the Calabi-Yau

varieties are defined over Q and
have CM, it is conjectured that
periods should be expressible in
terms of I'-values.

» We can infer from arithmetic
CM Cala b-l _Yaus Riemann-Roch that tz-oy should
have similar properties, analogoues
to classical Chowla-Selberg
formulas.

» We prove it for the fiber Z, in the
mirror family.




