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Mirror

symmetry

 Mathematical mirror symmetry is a 
(largely) conjectural framework working 
with Calabi-Yau manifolds.

 Calabi-Yau manifold: 𝑋 projective
manifolds of dim 𝑛 admitting a non-
vanishing holomorphic top-form 𝜂.

1. e.g. abelian varieties.

2. hypersurfaces of degree 𝑛 + 2 in 
projective space of dim 𝑛 + 1.



Mirror 

symmetry 

 Should relate two types of data on 
”mirrored” pairs of Calabi-Yau manifolds: 

❖ (A-side) Symplectic variations: 

▪ Curve counting on a Calabi-Yau manifold 
𝑋. 

❖ (B-side) Holomorphic variations: 

▪ Invariants built from a holomorphic 
”mirror family” of Calabi –Yau 
manifolds 𝒳 → 𝐷×.

 Should relate it via a mirror map between 
the two sides.

(mirrors have mirrored Hodge
diamonds)



Projection of 

Calabi-Yau of 

dim 3



A-side

 Fix Calabi-Yau manifold 𝑋, complexified Kähler cone:

𝐻𝑋 = 𝐻ℝ
1,1 𝑋 /𝐻ℤ

1,1(𝑋) + 𝑖𝐾

(𝐾 = Kähler cone). 

 Curve counting : Gromov-Witten invariants.

 Defined by integrating over a (virtual) fundamental class of
genus 𝑔 stable maps 𝐶 → 𝑋 landing in fixed 𝛽 ∈ 𝐻2(𝑋, ℤ).

 For hypersurfaces in projective space, 
𝐻2(𝑋, ℤ)=𝐻2(ℙ

𝑛+1, ℤ)=ℤ, and 𝛽 is the degree of the image of 𝐶
in projective space.

If dim𝑋 = 3 or 𝑔 = 1, the above (virtual) fundamental class is 
zero-dimensional, and we can count: 

𝑁𝑔,𝛽 = 𝑁𝑔,𝛽(𝑋) = deg ℳ𝑔 𝑋, 𝛽
𝑣𝑖𝑟𝑡

(symplectic side)



A-side

 BCOV (’94) organized this into a formal power series. Let
𝑔 = 1 from now on.

𝑁1,0 𝑋 ⋅ 𝜏 + ෍

𝛽 𝑐𝑢𝑟𝑣𝑒 𝑐𝑙𝑎𝑠𝑠

𝑁1,𝛽 𝑋 𝑞𝛽 .

 𝑞𝛽 = exp(2𝜋𝑖 ⟨𝛽, 𝜏⟩)

 𝜏 ∈ 𝐻𝑋 .

Denote the series by 𝐹1,𝐴 𝑋, 𝜏 = 𝐹1,𝐴 𝜏

(symplectic side)



B-side

 Will often consider MUM families of CYs 
of dimension 𝑛:

1. 𝑓:𝒳 → 𝐷× over the punctured
multidisc 𝐷× = 𝔻× 𝑑.

2. Cannot be deformed in other directions

3. Of maximal unipotent monodromy 
(MUM)

The last point means that the monodromy 
operator has the largest possible Jordan 
blocks.

Informally a cusp in a moduli space of
Calabi-Yau varieties:

𝐷× ⊆ ℳ𝐵 .

(holomorphic side)

B-side of the story is often interpreted as 
varations of Hodge structures (or complex), ℳ𝐵.



Mirror map:

𝜓 ↦ 𝜏

B → 𝐴-model

 (Morrison) In ”MUM” situation, with 𝐷× = 𝔻×, can realize 
"mirror map” as quotient of two (carefully picked) periods

𝜓 ↦ 𝜏 =
𝛾1׬ 𝜓

𝜂𝜓

𝛾0׬ 𝜓
𝜂𝜓

 RHS should be in 𝐻𝑋 , but it is one-dimensional in this 
setting and we think of it as part of ℂ.

 Sometimes exponentiate: 
𝜓 ↦ 𝑞 = exp 2𝜋𝑖𝜏 ,

𝔻× → 𝔻×

Think of it as a natural coordinate change. 



B-side, genus one,

general dimension

 BCOV (’94) predicts the existence of 𝐶∞

real valued function, in dimension 3,  
𝔉1,𝐵 on D×.

 𝔉1,𝐵 should satisfy a type of differential 

equation, the holomorphic anomaly 
equation.

 𝔉1,𝐵 should ”know” about 𝐹1,𝐴 on a 

mirror. 

 Gave a definition in terms of
holomorphic analytic torsion.

(holomorphic side)



(Holomorphic) 

Analytic

torsion

 On a compact Kähler manifold
𝑋,𝜔 , Kodaira-Laplace operator: 

Δ = 𝜕 𝜕
∗
+ 𝜕

∗
𝜕 acts on 𝐴𝑝,𝑞 𝑋 , with pos. 

eigenvalues Λ𝑝,𝑞

𝜁𝑝,𝑞 𝑠 = ෍

𝜆∈Λ𝑝,𝑞

1

𝜆𝑠
,

 The holomorphic analytic (or 
holomorphic Ray-Singer) torsion: 

𝑇 Ω𝑋
𝑝
, 𝜔 = exp ෍ −1 𝑞+1𝑞 𝜁’𝑝,𝑞 0 ).



BCOV torsion

𝕴 𝑋, 𝜔 := ∏𝑇 Ω𝑋
𝑝
, 𝜔

−1 𝑝𝑝

= exp −෍

𝑝,𝑞

−1 𝑝+𝑞𝑝𝑞𝜁𝑝,𝑞
′ 0 .

 Is a spectral invariant, as from notation, this

depends on the Kähler form 𝜔. 

 BCOV:

𝔉1,𝐵 𝑋 =
1

2
log𝕴 𝑋,𝜔 .



Example: One-

dimensional case

𝐸𝜏 = ℂ/ℤ + 𝜏ℤ

(mirror map is 

the identity)



One-

dimensional 

case

(Description of 

𝐴-side)

 𝑁1,𝑑 𝐸 = 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔𝑠 𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒 𝑑

 𝜎 𝑑 = σ𝑘|𝑑 𝑘 , the number of subgroups of ℤ2 of 
index 𝑑. 

𝑁1,𝑑 𝐸 = 𝜎 𝑑 /𝑑.

𝐹1,𝐴(𝑞) = −
1

24
log 𝑞 + σ

𝜎 𝑑

𝑑
𝑞𝑑

=
−1

24
log Δ

Δ 𝜏 = 𝑞∏ 1 − 𝑞𝑛 24, 𝑞 = exp 2𝜋𝑖𝜏

Δ
𝑎𝜏 + 𝑏

𝑐𝜏 + 𝑑
= 𝑐𝜏 + 𝑑 12Δ 𝜏 ,

modular form of weight 12 for 𝑆𝐿2(ℤ)



One-

dimensional 

case

(Description of 

𝐵-side)

The 𝜁0,1(𝑠) for ℂ/(ℤ + 𝜏ℤ) (standard metric) is, up to 
some factor, 

𝐸 𝜏, 𝑠 =෍
𝐼𝑚 𝜏 𝑠

𝑛 + 𝑚𝜏 2𝑠

sum over ℤ2 ∋ 𝑚, 𝑛 ≠ 0,0

𝜕

𝜕𝑠
𝐸 𝜏, 𝑠 ቚ

𝑠=0
=
1

2
log𝕴 𝑋,𝜔



One-

dimensional 

case

(Description of 

𝐵-side)

 Not difficult to derive the equation:
𝜕2

𝜕𝑧 𝜕𝑧

1

2
log 𝕴 𝐸𝜏, 𝜔 =

1

8 Im 𝜏 2

 Easy computation shows that all solutions of 
this type of equation are of the form

− log Im 𝜏 |𝑓|

for a holomorphic function 𝑓 on ℍ.

𝑆𝐿2(ℤ) acts by holomorphic isomorphisms on 
ℍ which implies that 

1

2
log 𝕴 𝐸𝜏, 𝜔 transforms as a 

modular form, and implies 𝑓 transforms as a 
modular form.

𝑓12 transforms as a modular form of weight 12. 

(holomorphic anomaly 

equation in the one-

dimensional case)

One finds the first Kronecker limit formula: 

𝔉1,𝐵 𝐸𝜏 = 𝐶 +
1

2
log Im 𝜏 +

1

24
log |Δ|

Δ = exp(−24𝐹1,𝐴(𝐸𝜏))



 Suppose that we have two mirrors 𝑋(A-model) and 𝒳𝜓 (B-model) with mirror map 𝜓 ↦ 𝜏.

 There is/should be a process called taking the holomorphic limit:

𝐹1,𝐵 𝜏 ≔ lim
𝜏→∞

𝔉1,𝐵 𝒳𝜓

 Unclear (to me) how to do this, but informally one develops 𝔉1,𝐵 𝒳𝜓 in the mirror
variable 𝜏 and keeps the holomorphic part.

𝐹1,𝐵 𝜓 = 𝐹1,𝐵 𝜏 = 𝐹1,𝐴 𝑋, 𝜏 .

The mirror conjecture statement at genus one



What is 

known?

 The case of dimension one was sketched.

 In dimension two, Calabi-Yau manifolds are K3 surfaces or 
abelian varieties. All the invariants are zero or trivial. 

 For quintic threefolds this is a result of Fang-Lu-Yoshikawa. 



Mathematical 

definition of

𝔉1,𝐵

 In the previous example we used a ”standard metric” on an 
elliptic curve. 

 The ”BCOV torsion” depended on the choice of 
metric/Kähler form, so is not only a function in the 𝐵-
model. 



The BCOV invariant

 Theorem (CDG): Suppose 𝑋 is a projective Calabi-Yau manifold of dimension 𝑛, 
with Kähler form 𝜔. Suppose for simplicity Ricci flat of volume 1.

𝜏𝐵𝐶𝑂𝑉 𝑋 ≔
𝕴(𝑋,𝜔)

∏𝑘=0
𝑛−1𝑉𝑜𝑙𝐿2 𝐻

𝑘 𝑋, ℤ , 𝜔 −1 𝑘 𝑛−𝑘

 This is independent of the 𝜔, and only depends on 𝑋.

𝑉𝑜𝑙𝐿2 𝐻𝑘 𝑋, ℤ , 𝜔 ≔ 𝑣𝑜𝑙𝐿2 𝐻𝑘 𝑋,ℝ /𝐻𝑘 𝑋, ℤ
2



 We thus propose

𝔉1,𝐵 ≔
1

2
log 𝜏𝐵𝐶𝑂𝑉 .

 Most known approaches to the BCOV conjecture is as follows:

1. Study boundary behavior of 𝜏𝐵𝐶𝑂𝑉 .

2. Use geometry of some appropriate moduli spaces to write 𝜏𝐵𝐶𝑂𝑉 in a simple way.

3. In the previous 1-dimensional case one could use the modularity to draw 
conclusions.



Remarks

 Call it the BCOV invariant. Generalizes known constructions in  
dimension 3 by Fang-Lu-Yoshikawa (2008). 

 Used to prove BCOV conjecture for quintic 3-fold.

 The case 𝑐1 𝑋 = 0 was discovered recently by Yeping Zhang 
(2019).



Some questions 
about the 
boundary 
behaviour



 Exists 𝜅𝑓 ∈ ℚ, such that

log 𝜏𝐵𝐶𝑂𝑉 𝒳𝜓 = 𝜅𝑓 log 𝜓
2 + 𝑜 log 𝜓 2 .

 Have general formulas for 𝜅𝑓 in the case of normal 

crossings degenerations. 

𝒳 → 𝔻
1-parameter 
proj. family of
degenerating 
CY:s+𝜖

(CDG)



 log 𝜏𝐵𝐶𝑂𝑉 𝒳𝜓 = 𝜅𝑓 log 𝜓
2 + 𝑜 log 𝜓 2 .

 For projective families of abelian varieties of dimension 
at least 2 and hyperkähler varieties, 𝜏 𝜓 is constant, 
reflecting the same behaviour on the 𝐴-side.

 In general we get topological constraints on the special 
fiber of such degenerations.

𝒳 → 𝔻
1-parameter 
proj. family of
degenerating 
CY:s +𝜖

(CDG)



 Suppose 𝑓:𝒳 → 𝔻 has at worst ODP singularities at the origin.

Then, 

if 𝑛 is odd, 𝜅𝑓 =
𝑛+1

24
#𝑆𝑖𝑛𝑔 𝒳0 .

If 𝑛 is even, 𝜅𝑓 =
2−𝑛

24
#𝑆𝑖𝑛𝑔 𝒳0 .

 If 𝑛 = 3, this was one of the main results of Fang-Lu-Yoshikawa
(2008).  

 If 𝑛 = 4, this was conjectured by Klemm-Pandharipande (2008).

 This was also conjectured by Fang-Lu-Yoshikawa for the BCOV 
torsion), and is related to ”universal behaviour of 𝓕1,𝐵 close to 
conifold points” in the theoretical physics litterature. 

𝒳 → 𝔻
1-parameter 
proj. family of
degenerating 
CY:s +𝜖

(CDG)



Arithmetic-

Riemann-Roch 
A mathematical formulation of the 

conjecture



Grothendieck-Riemann-Roch

 𝑓: 𝑋 → 𝑆 family of Calabi-Yau manifolds. Define:

𝑓∗𝐾𝒳/𝑆 = direct image of relative canonical bundle

𝜆𝐵𝐶𝑂𝑉 𝑓 ≔ 𝜆𝐵𝐶𝑂𝑉 =ໆ

𝑝,𝑞

det 𝑅𝑞𝑓∗ Ω𝒳/𝑆
𝑝

−1 𝑝𝑝

 The Grothendieck-Riemann-Roch implies that the cohomology classes of 

𝜆𝐵𝐶𝑂𝑉 and 𝑓∗𝐾𝒳/𝑆
⊗

𝜒

12 are the same. 

 The bundles are hence isomorphic (or some power thereof), but such an 
isomorphism is not unique.



Metrics

 𝑓:𝒳 → 𝑆 family of complex manifolds

 𝑓∗𝐾𝒳/𝑆 carries natural 𝐿2 −norm: 

𝜂 2 𝜓 ≔
𝑖𝑛

2

2𝜋 𝑛
න
𝒳𝜓

𝜂 ∧ 𝜂 .

𝜆𝐵𝐶𝑂𝑉 𝑋 =⊗𝑝,𝑞 det𝐻
𝑝,𝑞 𝑋 −1 𝑝+𝑞𝑝

𝐻𝑝,𝑞 𝑋 = ker Δ𝑝,𝑞 harmonic forms. Have 
natural 𝐿2 norm. 

The corresponding metric on 𝜆𝐵𝐶𝑂𝑉 𝑋 can 
be modified so that it doesn’t depend on an 
auxiliary Kähler form. 



Metrized

versions, 

linking BCOV 

invariant to 

GRR

 There are metrized versions of the 
Grothendieck-Riemann-Roch theorem: 
arithmetic Riemann-Roch theorem, due to 
Gillet-Soulé. 

 States that the two bundles are isometric, 
in a way which is unique up to 
multiplication by modulus one scalar. Fix 
this:

𝐺𝑅𝑅: 𝜆𝐵𝐶𝑂𝑉 → 𝑓∗𝐾𝒳/𝑆
⊗

𝜒
12

 Will provide us with the link between 
BCOV formulation and our formulation.

C.Soulé

H. Gillet

Arithmetic 
Riemann-Roch '92.



Arithmetic Riemann-Roch

theorem

𝐺𝑅𝑅: 𝜆𝐵𝐶𝑂𝑉 ↔ 𝑓∗𝐾𝒳/𝑆
⊗

𝜒
12

 Let 𝜂 be a trivializing section of 𝑓∗𝐾𝒳/𝑆. 

Then, up to an explicit factor,

𝜏𝐵𝐶𝑂𝑉 𝒳𝜓 =
𝐺𝑅𝑅 𝜂 𝐿2

2

𝜂
𝐿2
𝜒/6

.

(a special case of)

In the case of elliptic curves, this relationship is known as the (first) 
Kronecker limit formula, responsible for the mirror symmetry statement 
earlier.  



𝜏𝐵𝐶𝑂𝑉 𝒳𝜓 =
𝐺𝑅𝑅 𝜂 𝐿2

2

𝜂
𝐿2
𝜒/6

.

 If 𝜂′ is a trivializing section of 𝜆𝐵𝐶𝑂𝑉, define holomorphic 𝐹 on 𝑆 such that  

𝐹 =
𝐺𝑅𝑅 𝜂

𝜂′

𝜏𝐵𝐶𝑂𝑉 𝒳𝜓 = 𝐹 2
𝜂′ 𝐿2

2

𝜂
𝐿2
𝜒/6

 𝜂′ of 𝜆𝐵𝐶𝑂𝑉

 𝜂 of 𝑓∗𝐾𝒳/𝑆

 These two sections are not given, must be constructed.  



Genus one mirror symmetry formulation

 When 𝑓: 𝑋 → 𝔻× in the MUM situation (maximal unipotent monodromy) there are 
natural sections 

1. 𝜂′ of 𝜆𝐵𝐶𝑂𝑉

2. 𝜂 of 𝑓∗𝐾𝒳/𝑆

 Writing 𝜏𝐵𝐶𝑂𝑉 𝒳𝜓 = 𝐹 2 𝜂′
𝐿2
2

𝜂
𝐿2
𝜒/6, we have |F| = 𝐶 exp( −1 𝑛24𝐹1,𝐴(𝜏(𝜓)) |.

Notice that the expression 𝐹1,𝐴(𝜏(𝜓)) involves the mirror map/coordinate.



Hypersurfaces
in projective

space 
evidence in higher dimensions



Hypersurfaces

in projective

space

 Calabi-Yau hypersurface 𝑋𝑛+2 ⊆ ℙ𝑛+1

 Interested in studying the mirror symmetry statements in 
this case

 For mirror quintics in ℙ5, goes back to Fang-Lu-Yoshikawa 
in 2008.



Constructing mirror family

 𝑋 → ℙ1, where for 𝜓 ∈ ℙ1, 𝑋𝜓 = 𝐹𝜓 = 0 ,

𝐹𝜓 = σ𝑥𝑖
𝑛+2 − 𝜓 𝑛 + 2 𝑥0…𝑥𝑛+1

 The group 𝜇𝑛+2 acts on each coordinate.

 Let 𝐺 be the group of such roots of unity which preserving 𝑥0…𝑥𝑛+1. It acts on 
𝑋 → ℙ1.

 𝑌𝜓 = 𝑋𝜓/𝐺 has simple singularities, 𝜓 ≠ ∞, admits a (crepant ) resolution 𝑍𝜓 →

𝑌𝜓.

 After desingularizing everywhere, provides a family 𝑍 → ℙ1.



Geometry of

mirror family

𝑍 → ℙ1
 𝜓 = ∞, semi-stable point (MUM point).

 𝜓 = 𝜉, 𝜉𝑛+2 = 1, single ODP singularity on 𝑍𝜓.

 𝜓 = anything else, normal smooth point. 

 A neighborhood of ∞ ”is” the mirror family in the 
previous sense.

𝑍𝜓𝑍

ℙ1



The mirror conjecture holds, up

to constant. 

 The mirror conjecture holds, up to 
constant, for hypersurfaces in projective 
space. 

Strategy of proof:

1. Compute 𝐹 using algebraic sections and 
arithmetic Riemann-Roch.

2. Modify the sections to fit the mirror 
symmetry setting.



Construction of the algebraic 

sections

𝑋 → 𝑋/𝐺 ← 𝑍

the cohomology of 𝑍𝜓 ∼ 𝐺-invariant part of the cohomology of 𝑋𝜓.

 Generally more complicated, but can construct enough sections ”by 
hand” from ℙ𝑛+1, to obtain 𝜂, 𝜂′.

 Example: 

𝜂 ≔ 𝑅𝑒𝑠
𝜓𝐻Ω

𝐹𝜓
∈ 𝐻𝑛,0 𝑋𝜓

𝐺
,

Ω = σ −1 𝑖𝑥𝑖𝑑𝑥0… ෢𝑑𝑥𝑖𝑑𝑥𝑛+1, 𝐻 = 𝑥0…𝑥𝑛+1

Taking derivatives (Kodaira-Spencer) produces enough sections to write 
down 𝜂′.



How to compute F

 Recall arithmetic Riemann-Roch: 𝜏𝐵𝐶𝑂𝑉 = 𝐹 2
𝜂′

𝐿2 𝐵𝐶𝑂𝑉

2

𝜂
𝐿2
𝜒/6

1

2
log 𝜏𝐵𝐶𝑂𝑉 +

𝜒

12
log 𝜂 𝐿2 − log 𝜂′ 𝐿2 𝐵𝐶𝑂𝑉 = log |𝐹|

 Want to:

 determine 𝐹 = ∏ 𝜓 − 𝑎
𝑛𝑎 , since 𝐹 is just a rational function on ℙ1. 

 Hence, for 𝑎 ∈ ℙ1,
1

2
log 𝜏𝐵𝐶𝑂𝑉 +

𝜒

12
log 𝜂 𝐿2 − log 𝜂′ 𝐿2 𝐵𝐶𝑂𝑉 = 𝑛𝑎 log 𝜓 − 𝑎 + 𝑜(log |𝜓 − 𝑎|)

 Since deg𝑑𝑖𝑣 𝐹 = σ𝑛𝑎 = 0, it is enough to control all points except 𝑎 = ∞.



For 𝑎 ∈ ℙ1, want to control 𝑛𝑎 , i.e. the asymptotic behavior close to 𝑎 :

1

2
log 𝜏𝐵𝐶𝑂𝑉 +

𝜒

12
log 𝜂 𝐿2 − log 𝜂′ 𝐿2 𝐵𝐶𝑂𝑉 = 𝑛𝑎 log 𝜓 − 𝑎 + 𝑜(log |𝜓 − 𝑎|)

Outside of 𝑂𝐷𝑃′𝑠 everything is trivial. 

log 𝜏𝐵𝐶𝑂𝑉 close to ODP points was recalled earlier. 



Asymptotic 

behavior

Theorem (CDG): Close to 𝑎 ∈ ℙ1,

log 𝜂′ 𝐿2 = 𝛼′ log 𝜓 − 𝑎 + 𝑜(log |𝜓 − 𝑎|)

log 𝜂 𝐿2 = 𝛼 log 𝜓 − 𝑎 + 𝑜(log |𝜓 − 𝑎|)

These can be expressed in terms of 
monodromy eigenvalues, and is part of a 
refinement of Schmid’s nilpotent orbit 
theorem.



Conclusions

 We hence control the logarithmic
behaviour of

1. log 𝜏𝐵𝐶𝑂𝑉 𝑍𝜓

2. log 𝜂′ 𝐿2 , log 𝜂 𝐿2

around all points except 𝜓 = ∞. Some delicate
computations later, one finds an expression

𝐹(𝜓) = 𝐶
𝜓(𝑛+2)𝑎

1 − 𝜓𝑛+2 𝑏

Where, 𝐶 ∈ ℝ>0,

𝑎 = −1 𝑛
𝑛(𝑛 + 1)

6
−

𝜒(𝑍𝜓)

12(𝑛 + 2)

𝑏 = −1 𝑛
𝑛(3𝑛 − 2)
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 The computation is based on: 

1. Direct computations of limiting 
mixed Hodge structures, 

2. Numerical tricks involving the 
Yukawa coupling at infinitywhich is 
supposed to be controlling genus 0 
Gromov-Witten invariants in 
dimension 3. 



Modify the 

sections

 The weight filtration on the limiting mixed 
Hodge structure at infinity: 

𝑊0 ⊆ 𝑊1 = 𝑊2 ⊆ ⋯ ⊆ 𝑊2𝑛−1 = 𝑊2𝑛 = 𝐻𝑙𝑖𝑚
𝑛

 Theorem(CDG): Fix a basis 𝛾∙ of  

𝐻𝑙𝑖𝑚
𝑛−1 ∨

adapted to the weight filtration. 

There is a unique holomorphic basis ෤𝜂∙
adapted to  the Hodge filtration on 𝑅𝑛−1𝑓∗ℂ
such that

1. 𝛾𝑘׬
෤𝜂𝑝 =

0, 𝑘 < 𝑝
1, 𝑘 = 𝑝

2. ෤𝜂∙ extends to a basis of the ”canonical”  
extension of 𝑅𝑛𝑓∗ℂ in a neighborhood of ∞.



Sections

adapted to the 

mirror

situation

 The basis ෤𝜂∙ is of a more transcendental 
nature than 𝜂, 𝜂𝑘 ∙

 Only defined in a neighborhood of ∞.

 One can pass from one to the other by 
dividing by a lot of periods. We can
fabricate periods by solving Picard-Fuchs 
equations and using some tricks. 

 This leads to a complicated expression.

 Was related to Gromov-Witten invariants 
of the mirror by Zinger, ’08. 



𝜏𝐵𝐶𝑂𝑉(𝑍𝜓)

= exp −1 𝑛24𝐹1,𝐴(𝜏 𝜓 ) Θ 2

Here, for some constant 𝐶 ∈ ℝ>0,

Θ ≔ 𝐶
෤𝜂
𝐿2
𝜒 𝑋𝑛+2 /12

෩𝜂′
𝐿2

and 
𝜓 ↦ 𝜏(𝜓)

is the mirror map. 

Statement for logarithmic derivative
follows.

CDG 

(case in dimension 3 is due to Fang-Lu-
Yoshikawa)

Theorem (CDG)



Main theorem (CDG): The 
mirror conjecture holds
for hypersurfaces in projective 
space

In other words, the “analytic 
torsion” contains information about 
genus one Gromov-Witten 
invariants on the mirror, and can be 
understood through “arithmetic 
Riemann-Roch”. 





CM Calabi-Yaus

 Gross-Deligne: If the Calabi-Yau

varieties are defined over ℚ and 

have CM, it is conjectured that 

periods should be expressible in 

terms of Γ-values. 

 We can infer from arithmetic

Riemann-Roch that 𝜏𝐵𝐶𝑂𝑉 should

have similar properties, analogoues

to classical Chowla-Selberg 

formulas.

 We prove it for the fiber 𝑍0 in the 

mirror family. 


