

Genus one mirror symmetry (and the arithmetic Riemann-Roch theorem)

Dennis Eriksson, 2 March 2021

Chalmers Institute for Technology

University of Gothenburg

Joint work:

Paris

Gerard Freixas i Montplet

Rennes

Christophe Mourougane

On genus one mirror symmetry in higher dimensions and the BCOV conjectures, arXiv:1911.06734

BCOV invariants of Calabi-Yau manifolds and degenerations of Hodge structures, Duke Mathematical Journal Vol. -1, Issue -1 (Jan 2021)

Singularities of metrics on Hodge bundles and their topological invariants, Algebraic Geometry, Vol. 5 Issue 6 pp. 742-775

CDG (D. Eriksson, G. Freixas, C.Mourougane)

Table of contents

Mirror symmetry of Bershadsky-Cecotti-Ooguri-Vafa, at genus one.

The arithmetic Riemann-Roch theorem

Calabi-Yau hypersurfaces in projective space

Mirror symmetry of Bershadsky-Cecotti-Ooguri-Vafa (BCOV) String theory formulation, emphasis on genus one.

Mirror symmetry

- Mathematical mirror symmetry is a (largely) conjectural framework working with Calabi-Yau manifolds.
- Calabi-Yau manifold: X projective manifolds of dim n admitting a nonvanishing holomorphic top-form η .
- 1. e.g. abelian varieties.
- 2. hypersurfaces of degree n + 2 in projective space of dim n + 1.

Mirror symmetry

(mirrors have mirrored Hodge diamonds)

- Should relate two types of data on "mirrored" pairs of Calabi-Yau manifolds:
- (A-side) Symplectic variations:
- Curve counting on a Calabi-Yau manifold X.
- (B-side) Holomorphic variations:
- Invariants built from a holomorphic "mirror family" of Calabi –Yau manifolds $\mathcal{X} \to D^{\times}$.
- Should relate it via a mirror map between the two sides.

Projection of Calabi-Yau of dim 3

Fix Calabi-Yau manifold *X*, complexified Kähler cone:

A-side

$$H_X = H_{\mathbb{R}}^{1,1}(X)/H_{\mathbb{Z}}^{1,1}(X) + iK$$

 $(K = K\ddot{a}hler cone).$

- Curve counting : Gromov-Witten invariants.
- Defined by integrating over a (virtual) fundamental class of genus g stable maps $C \to X$ landing in fixed $\beta \in H_2(X, \mathbb{Z})$.
- For hypersurfaces in projective space, $H_2(X, \mathbb{Z}) = H_2(\mathbb{P}^{n+1}, \mathbb{Z}) = \mathbb{Z}$, and β is the degree of the image of C in projective space.

If $\dim X = 3$ or g = 1, the above (virtual) fundamental class is zero-dimensional, and we can count:

$$N_{g,\beta} = N_{g,\beta}(X) = \deg\left(\left[\overline{\mathcal{M}_g}(X,\beta)\right]^{virt}\right)$$

(symplectic side)

▶ BCOV ('94) organized this into a formal power series. Let g = 1 from now on.

A-side

(symplectic side)

$$N_{1,0}(X) \cdot \tau + \sum_{\beta \text{ curve class}} N_{1,\beta}(X) q^{\beta}.$$

- $\tau \in H_X$.

Denote the series by $F_{1,A}(X,\tau) = F_{1,A}(\tau)$

B-side

(holomorphic side)

B-side of the story is often interpreted as varations of Hodge structures (or complex), \mathcal{M}_B .

- Will often consider MUM families of CYs of dimension n:
- 1. $f: \mathcal{X} \to D^{\times}$ over the punctured multidisc $D^{\times} = (\mathbb{D}^{\times})^d$.
- 2. Cannot be deformed in other directions
- Of maximal unipotent monodromy (MUM)

The last point means that the monodromy operator has the largest possible Jordan blocks.

Informally a cusp in a moduli space of Calabi-Yau varieties:

$$D^{\times} \subseteq \mathcal{M}_B$$
.

Mirror map:

$$\psi \mapsto \tau$$

 $B \rightarrow A$ -model

(Morrison) In "MUM" situation, with $D^{\times} = \mathbb{D}^{\times}$, can realize "mirror map" as quotient of two (carefully picked) periods

$$\psi \mapsto \tau = \frac{\int_{\gamma_1(\psi)} \eta_{\psi}}{\int_{\gamma_0(\psi)} \eta_{\psi}}$$

- RHS should be in H_X , but it is one-dimensional in this setting and we think of it as part of \mathbb{C} .
- Sometimes exponentiate:

$$\psi \mapsto q = \exp(2\pi i \tau),$$

$$\mathbb{D}^\times \to \mathbb{D}^\times$$

Think of it as a natural coordinate change.

B-side, genus one, general dimension

(holomorphic side)

- ▶ BCOV ('94) predicts the existence of C^{∞} real valued function, in dimension 3, $\mathfrak{F}_{1,B}$ on D[×].
- $\mathfrak{F}_{1,B}$ should satisfy a type of differential equation, the holomorphic anomaly equation.
- $\mathfrak{F}_{1,B}$ should "know" about $F_{1,A}$ on a mirror.
- Gave a definition in terms of holomorphic analytic torsion.

(Holomorphic) Analytic torsion

• On a compact Kähler manifold (X, ω) , Kodaira-Laplace operator:

 $\Delta = \overline{\partial} \overline{\partial}^* + \overline{\partial}^* \overline{\partial}$ acts on $A^{p,q}(X)$, with pos. eigenvalues $\Lambda_{p,q}$

$$\zeta_{p,q}(s) = \sum_{\lambda \in \Lambda_{p,q}} \frac{1}{\lambda^s},$$

► The holomorphic analytic (or holomorphic Ray-Singer) torsion:

$$T(\Omega_X^p, \omega) = \exp\left(\sum (-1)^{q+1} q \, \zeta'_{p,q}(0)).\right)$$

BCOV torsion

$$\mathfrak{F}(X,\omega) := \prod T \left(\Omega_X^p, \omega\right)^{(-1)^p p}$$

$$= \exp\left(-\sum_{p,q} (-1)^{p+q} pq \zeta_{p,q}'(0)\right).$$

Is a spectral invariant, as from notation, this *depends* on the Kähler form ω .

BCOV:

$$\mathfrak{F}_{1,B}(X) = \frac{1}{2}\log \mathfrak{F}(X,\omega).$$

Example: Onedimensional case

$$E_{\tau} = \mathbb{C}/\mathbb{Z} + \tau \mathbb{Z}$$

(mirror map is the identity)

Onedimensional case

(Description of *A*-side)

- $N_{1,d}(E) = topological coverings of degree d$
- $\sigma(d) = \sum_{k|d} k$, the number of subgroups of \mathbb{Z}^2 of index d.

$$N_{1,d}(E) = \frac{\sigma(d)}{d}$$
.

$$F_{1,A}(q) = -\frac{1}{24} \log q + \sum \frac{\sigma(d)}{d} q^d$$
$$= \frac{1}{24} \log \Delta$$

$$\Delta(\tau) = q \prod (1 - q^n)^{24}, q = \exp(2\pi i \tau)$$

$$\Delta\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^{12}\Delta(\tau),$$

modular form of weight 12 for $SL_2(\mathbb{Z})$

Onedimensional case

▶ The $\zeta_{0,1}(s)$ for $\mathbb{C}/(\mathbb{Z}+\tau\mathbb{Z})$ (standard metric) is, up to some factor,

$$E(\tau, s) = \sum \frac{Im(\tau)^s}{|n + m\tau|^{2s}}$$

sum over $\mathbb{Z}^2 \ni (m, n) \neq (0,0)$

$$\frac{\partial}{\partial s} E(\tau, s) \Big|_{s=0} = \frac{1}{2} \log \mathfrak{F}(X, \omega)$$

Onedimensional case

(Description of B-side)

Not difficult to derive the equation:
$$\frac{\partial^2}{\partial z \, \partial \overline{z}} \left(\frac{1}{2} \log \Im(E_{\tau}, \omega) \right) = \frac{1}{8 \, \mathrm{Im}(\tau)^2}$$

(holomorphic anomaly equation in the onedimensional case)

Easy computation shows that all solutions of this type of equation are of the form

$$-\log\left(\sqrt{\operatorname{Im}(\tau)}\left|f\right|\right)$$

for a holomorphic function f on \mathbb{H} .

 $SL_2(\mathbb{Z})$ acts by holomorphic isomorphisms on \mathbb{H} which implies that $\frac{1}{2}\log\mathfrak{F}(E_{\tau},\omega)$ transforms as a modular form, and implies |f| transforms as a modular form.

 f^{12} transforms as a modular form of weight 12.

One finds the first Kronecker limit formula:
$$\mathfrak{F}_{1,B}(E_{\tau}) = C + \frac{1}{2}\log\operatorname{Im}(\tau) + \frac{1}{24}\log|\Delta|$$
$$|\Delta| = \exp(-24F_{1,A}(E_{\tau}))$$

The mirror conjecture statement at genus one

- Suppose that we have two mirrors X(A-model) and X_{ψ} (B-model) with mirror map $\psi \mapsto \tau$.
- ► There is/should be a process called taking the *holomorphic limit*:

$$F_{1,B}(\tau) \coloneqq \lim_{\overline{\tau} \to \infty} \mathfrak{F}_{1,B}(\mathcal{X}_{\psi})$$

Unclear (to me) how to do this, but informally one develops $\mathfrak{F}_{1,B}(\mathcal{X}_{\psi})$ in the mirror variable τ and keeps the holomorphic part.

$$F_{1,B}(\psi) = F_{1,B}(\tau) = F_{1,A}(X,\tau).$$

What is known?

- The case of dimension one was sketched.
- In dimension two, Calabi-Yau manifolds are K3 surfaces or abelian varieties. All the invariants are zero or trivial.
- ► For quintic threefolds this is a result of Fang-Lu-Yoshikawa.

Mathematical definition of $\mathfrak{F}_{1,B}$

- In the previous example we used a "standard metric" on an elliptic curve.
- The "BCOV torsion" depended on the choice of metric/Kähler form, so is not only a function in the *B*-model.

The BCOV invariant

Theorem (CDG): Suppose X is a projective Calabi-Yau manifold of dimension n, with Kähler form ω. Suppose for simplicity Ricci flat of volume 1.

$$\tau_{BCOV}(X) \coloneqq \frac{\mathfrak{F}(X,\omega)}{\prod_{k=0}^{n-1} Vol_{L^2}(H^k(X,\mathbb{Z}),\omega)^{(-1)^k(n-k)}}$$

This is independent of the ω, and only depends on X.

$$Vol_{L^2}(H^k(X,\mathbb{Z}),\omega) := (vol_{L^2}(H^k(X,\mathbb{R})/H^k(X,\mathbb{Z})))^2$$

We thus propose

$$\mathfrak{F}_{1,B} \coloneqq \frac{1}{2} \log \tau_{BCOV} \,.$$

- Most known approaches to the BCOV conjecture is as follows:
- 1. Study boundary behavior of τ_{BCOV} .
- 2. Use geometry of some appropriate moduli spaces to write τ_{BCOV} in a simple way.
- 3. In the previous 1-dimensional case one could use the modularity to draw conclusions.

Remarks

- Call it the BCOV invariant. Generalizes known constructions in dimension 3 by Fang-Lu-Yoshikawa (2008).
- ▶ Used to prove BCOV conjecture for quintic 3-fold.
- The case $c_1(X) = 0$ was discovered recently by Yeping Zhang (2019).

Some questions about the boundary behaviour

Exists $\kappa_f \in \mathbb{Q}$, such that

$$\log \tau_{BCOV}(\mathcal{X}_{\psi}) = \kappa_f \log |\psi|^2 + o(\log |\psi|^2).$$

► Have general formulas for $κ_f$ in the case of normal crossings degenerations.

 $\mathcal{X} \to \mathbb{D}$ 1-parameter
proj. family of
degenerating $CY:s+\epsilon$

(CDG)

- For projective families of abelian varieties of dimension at least 2 and hyperkähler varieties, $\tau(\psi)$ is constant, reflecting the same behaviour on the A-side.
- In general we get topological constraints on the special fiber of such degenerations.

 $\mathcal{X} \to \mathbb{D}$ 1-parameter
proj. family of
degenerating
CY:s $+\epsilon$

(CDG)

Suppose $f: \mathcal{X} \to \mathbb{D}$ has at worst ODP singularities at the origin. Then,

if
$$n$$
 is odd, $\kappa_f = \frac{n+1}{24} \# Sing(\mathcal{X}_0).$ If n is even, $\kappa_f = \frac{2-n}{24} \# Sing(\mathcal{X}_0).$

- If n = 3, this was one of the main results of Fang-Lu-Yoshikawa (2008).
- If n = 4, this was conjectured by Klemm-Pandharipande (2008).
- This was also conjectured by Fang-Lu-Yoshikawa for the BCOV torsion), and is related to "universal behaviour of $\mathcal{F}_{1,B}$ close to conifold points" in the theoretical physics litterature.

 $\mathcal{X} \to \mathbb{D}$ 1-parameter
proj. family of
degenerating
CY:s $+\epsilon$

(CDG)

Arithmetic-Riemann-Roch

A mathematical formulation of the conjecture

Grothendieck-Riemann-Roch

 $f: X \to S$ family of Calabi-Yau manifolds. Define:

 $f_*K_{\mathcal{X}/S}$ = direct image of relative canonical bundle

$$\lambda_{BCOV}(f) \coloneqq \lambda_{BCOV} = \bigotimes_{p,q} \left(\det R^q f_* \, \Omega_{\mathcal{X}/S}^p \right)^{(-1)^p p}$$

- The Grothendieck-Riemann-Roch implies that the cohomology classes of λ_{BCOV} and $\left(f_*K_{\mathcal{X}/S}\right)^{\otimes \frac{\chi}{12}}$ are the same.
- ► The bundles are hence isomorphic (or some power thereof), but such an isomorphism is not unique.

- ► $f: X \to S$ family of complex manifolds
- $f_*K_{X/S}$ carries natural L^2 —norm:

$$|\eta|^2 (\psi) \coloneqq \frac{i^{n^2}}{(2\pi)^n} \int_{\mathcal{X}_{\psi}} \eta \wedge \overline{\eta}.$$

Metrics

$$\lambda_{BCOV}(X) = \bigotimes_{p,q} \det H^{p,q}(X)^{(-1)^{p+q}p}$$

 $H^{p,q}(X) = \ker \Delta^{p,q}$ harmonic forms. Have natural L^2 norm.

The corresponding metric on $\lambda_{BCOV}(X)$ can be modified so that it doesn't depend on an auxiliary Kähler form.

C.Soulé

H. Gillet

Arithmetic Riemann-Roch '92.

- ► There are metrized versions of the Grothendieck-Riemann-Roch theorem: *arithmetic Riemann-Roch theorem*, due to Gillet-Soulé.
- States that the two bundles are isometric, in a way which is unique up to multiplication by modulus one scalar. Fix this:

$$GRR: \lambda_{BCOV} \to \left(f_* K_{\mathcal{X}/S}\right)^{\bigotimes \frac{\mathcal{X}}{12}}$$

► Will provide us with the link between BCOV formulation and our formulation.

Arithmetic Riemann-Roch theorem

(a special case of)

$$GRR: \lambda_{BCOV} \leftrightarrow \left(f_* K_{\mathcal{X}/S}\right)^{\bigotimes \frac{\mathcal{X}}{12}}$$

Let η be a trivializing section of $f_*K_{\mathcal{X}/S}$. Then, up to an explicit factor,

$$\tau_{BCOV}(\mathcal{X}_{\psi}) = \frac{|GRR(\eta)|_{L^2}^2}{|\eta|_{L^2}^{\chi/6}}.$$

In the case of elliptic curves, this relationship is known as the (first) Kronecker limit formula, responsible for the mirror symmetry statement earlier.

$$\tau_{BCOV}(\mathcal{X}_{\psi}) = \frac{|GRR(\eta)|_{L^2}^2}{|\eta|_{L^2}^{\chi/6}}.$$

▶ If η' is a trivializing section of λ_{BCOV} , define holomorphic F on S such that

$$F = \frac{GRR(\eta)}{\eta'}$$

$$\tau_{BCOV}(\mathcal{X}_{\psi}) = |F|^2 \frac{|\eta'|_{L^2}^2}{|\eta|_{L^2}^{\chi/6}}$$

- $\rightarrow \eta'$ of λ_{BCOV}
- $\qquad \eta \text{ of } f_* K_{\mathcal{X}/S}$
- These two sections are not given, must be constructed.

Genus one mirror symmetry formulation

When $f: X \to \mathbb{D}^{\times}$ in the MUM situation (maximal unipotent monodromy) there are natural sections

- 1. η' of λ_{BCOV}
- 2. η of $f_*K_{\chi/S}$
- Writing $\tau_{BCOV}(\mathcal{X}_{\psi}) = |F|^2 \frac{|\eta'|_{L^2}^2}{|\eta|_{L^2}^{\chi/6}}$, we have $|F| = C \left| \exp((-1)^n 24 F_{1,A}(\tau(\psi))) \right|$.

Notice that the expression $F_{1,A}(\tau(\psi))$ involves the mirror map/coordinate.

Hypersurfaces in projective space

- ► Calabi-Yau hypersurface $X_{n+2} \subseteq \mathbb{P}^{n+1}$
- ► Interested in studying the mirror symmetry statements in this case
- For mirror quintics in \mathbb{P}^5 , goes back to Fang-Lu-Yoshikawa in 2008.

Constructing mirror family

 $X \to \mathbb{P}^1$, where for $\psi \in \mathbb{P}^1$, $X_{\psi} = \{F_{\psi} = 0\}$,

$$F_{\psi} = \sum x_i^{n+2} - \psi(n+2)x_0 \dots x_{n+1}$$

- The group μ_{n+2} acts on each coordinate.
- Let *G* be the group of such roots of unity which preserving $x_0 \dots x_{n+1}$. It acts on $X \to \mathbb{P}^1$.
- $Y_{\psi} = X_{\psi}/G$ has simple singularities, $\psi \neq \infty$, admits a (crepant) resolution $Z_{\psi} \rightarrow Y_{\psi}$.
- After desingularizing everywhere, provides a family $Z \to \mathbb{P}^1$.

Geometry of mirror family

• $\psi = \infty$, semi-stable point (MUM point).

 $\psi = \xi, \xi^{n+2} = 1$, single ODP singularity on Z_{ψ} .

 ψ = anything else, normal smooth point.

A neighborhood of ∞ "is" the mirror family in the previous sense.

The mirror conjecture holds, up to constant.

► The mirror conjecture holds, up to constant, for hypersurfaces in projective space.

Strategy of proof:

- 1. Compute *F* using algebraic sections and arithmetic Riemann-Roch.
- 2. Modify the sections to fit the mirror symmetry setting.

Construction of the algebraic sections

$$X \to X/G \leftarrow Z$$

the cohomology of $Z_{\psi} \sim G$ -invariant part of the cohomology of X_{ψ} .

- Generally more complicated, but can construct enough sections "by hand" from \mathbb{P}^{n+1} , to obtain η , η' .
- **Example:**

$$\eta \coloneqq Res\left(\frac{\psi H\Omega}{F_{\psi}}\right) \in H^{n,0}\big(X_{\psi}\big)^G,$$

$$\Omega = \sum (-1)^i x_i dx_0 \dots \widehat{dx_i} dx_{n+1}, H = x_0 \dots x_{n+1}$$

Taking derivatives (Kodaira-Spencer) produces enough sections to write down η' .

How to compute F

Recall arithmetic Riemann-Roch: $\tau_{BCOV} = |F|^2 \frac{|\eta'|_{L^2 BCOV}^2}{|\eta|_{L^2}^{\chi/6}}$ $\frac{1}{2} \log \tau_{BCOV} + \frac{\chi}{12} \log |\eta|_{L^2} - \log |\eta'|_{L^2 BCOV} = \log |F|$

- Want to:
 - b determine $F = \prod (\psi a)^{n_a}$, since F is just a rational function on \mathbb{P}^1 .
 - \blacktriangleright Hence, for $a \in \mathbb{P}^1$,

$$\frac{1}{2}\log \tau_{BCOV} + \frac{\chi}{12}\log|\eta|_{L^2} - \log|\eta'|_{L^2 BCOV} = n_a \log|\psi - a| + o(\log|\psi - a|)$$

▶ Since deg $div F = \sum n_a = 0$, it is enough to control all points except $a = \infty$.

For $a \in \mathbb{P}^1$, want to control n_a , i.e. the asymptotic behavior close to a:

$$\frac{1}{2}\log \tau_{BCOV} + \frac{\chi}{12}\log |\eta|_{L^2} - \log |\eta'|_{L^2 BCOV} = n_a \log |\psi - a| + o(\log |\psi - a|)$$

Outside of *ODP's* everything is trivial.

 $\log \tau_{BCOV}$ close to ODP points was recalled earlier.

Asymptotic behavior

- ► Theorem (CDG): Close to $a \in \mathbb{P}^1$,
- $\log |\eta'|_{L^2} = \alpha' \log |\psi a| + o(\log |\psi a|)$
- $\log |\eta|_{L^2} = \alpha \log |\psi a| + o(\log |\psi a|)$

► These can be expressed in terms of monodromy eigenvalues, and is part of a refinement of Schmid's nilpotent orbit theorem.

Conclusions

- We hence control the logarithmic behaviour of
- 1. $\log \tau_{BCOV}(Z_{\psi})$
- $\log |\eta'|_{L^2}$, $\log |\eta|_{L^2}$

around all points except $\psi = \infty$. Some delicate computations later, one finds an expression $F(\psi) = C \frac{\psi^{(n+2)a}}{(1-\psi^{n+2})^b}$

$$F(\psi) = C \frac{\psi^{(n+2)a}}{(1 - \psi^{n+2})^b}$$

Where, $C \in \mathbb{R}_{>0}$,

$$a = (-1)^n \frac{n(n+1)}{6} - \frac{\chi(Z_{\psi})}{12(n+2)}$$
$$b = (-1)^n \frac{n(3n-2)}{24}$$

- ► The computation is based on:
- Direct computations of limiting mixed Hodge structures,
- 2. Numerical tricks involving the Yukawa coupling at infinitywhich is supposed to be controlling genus 0 Gromov-Witten invariants in dimension 3.

Modify the sections

► The weight filtration on the limiting mixed Hodge structure at infinity:

$$W_0 \subseteq W_1 = W_2 \subseteq \cdots \subseteq W_{2n-1} = W_{2n} = H_{lim}^n$$

Theorem(CDG): Fix a basis γ . of $\left(H_{lim}^{n-1}\right)^{\vee}$ adapted to the weight filtration. There is a unique holomorphic basis $\tilde{\eta}$. adapted to the Hodge filtration on $R^{n-1}f_*\mathbb{C}$ such that

$$\mathbf{1.} \quad \int_{\gamma_k} \tilde{\eta}_p = \begin{cases} 0, k$$

2. $\tilde{\eta}$. extends to a basis of the "canonical" extension of $R^n f_* \mathbb{C}$ in a neighborhood of ∞ .

Sections adapted to the mirror situation

- The basis $\tilde{\eta}$ is of a more transcendental nature than η , η_k .
- ▶ Only defined in a neighborhood of ∞ .
- One can pass from one to the other by dividing by a lot of periods. We can fabricate periods by solving Picard-Fuchs equations and using some tricks.
- ► This leads to a complicated expression.
- Was related to Gromov-Witten invariants of the mirror by Zinger, '08.

Theorem (CDG)

CDG

(case in dimension 3 is due to Fang-Lu-Yoshikawa)

$$\tau_{BCOV}(Z_{\psi})$$

$$= \left| \exp\left((-1)^n 24 F_{1,A}(\tau(\psi)) \right) \right| |\Theta|^2$$

Here, for some constant $C \in \mathbb{R}_{>0}$,

$$|\Theta| \coloneqq C \left| \frac{|\widetilde{\eta}|_{L^2}^{\chi(X_{n+2})/12}}{|\widetilde{\eta'}|_{L^2}} \right|$$

and

$$\psi \mapsto \tau(\psi)$$

is the mirror map.

Statement for logarithmic derivative follows.

Main theorem (CDG): The mirror conjecture holds for hypersurfaces in projective space

In other words, the "analytic torsion" contains information about genus one Gromov-Witten invariants on the mirror, and can be understood through "arithmetic Riemann-Roch".

Thank you for your attention

CM Calabi-Yaus

- Gross-Deligne: If the Calabi-Yau varieties are defined over Q and have CM, it is conjectured that periods should be expressible in terms of Γ-values.
- We can infer from arithmetic Riemann-Roch that τ_{BCOV} should have similar properties, analogoues to classical Chowla-Selberg formulas.
- We prove it for the fiber Z_0 in the mirror family.