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Positive Representations of Ug (gr)

Definition of U, (sl(2,R))

U, (sly)= Hopf-algebra (E, F, K*1) over C(q) such that
-1
KE = {’EK, KF = ¢ *FK, [E,F] = %
qa—4q
Coproduct:
AE)=1®E+E®K, A(F)=F®1+K'®F
AK)=K® K
(Also counit €, antipode S)
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Positive Representations of Ug (gr)

Definition of U, (sl(2,R))

U, (sly)= Hopf-algebra (E, F, K*1) over C(q) such that
— K1
KE = {’EK, KF = ¢ *FK, [E,F] = K—_l
qa—4q
Coproduct:
AE)=1®E+E®K, A(F)=F®1+K'®F
AK)=K® K
(Also counit €, antipode S)

Ug(sI(2,R)): (gl =1)
E*=F, F*=F, K'=K
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Positive Representations of Ug (gr)

Definition of U,(gr)

DY’, LI’A .
Definition

)
Uy(g)= Hopf-algebra (E;, F;, K icr over C(q) such that
Cal'{"‘ ',\afv{)( .
> —aa K’L - Kl
KiEj = EK;,  KiF;=q “FK,; [E,Fj= 5i'ﬁ
+ Serre relations.
Coproduct:

A(E) =1® B + B ® K, AF)=F®1+K'9F,
A(K;) = K; ® K;

(Also counit €, antipode S)

P
Ug(gr):  (lal =1) =1
Ef=E, F'=F, K'=K
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Positive Representations of Uy (gr)

Definition of U, (gr)

Dy(9)= Drinfeld’s Double: (E;, Fy, K, K[™")e;
of Uylk) -
Kij = "B, KiFy =g K, B ) =0y
+ Serre relations + Similar for K
Coproduct:
A(E;) =1® E; + E; ® K;, A(F)=F,@1+ K/ ®F,
AK) =Ki9K;, A(K]) =K ®K]
(Also counit €, antipode S)
Uy(g) = Dq(ﬂ)/<KiKz{ = 1)ier
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Positive Representations of U, (gr)

Positive Representations of U, (gr)

Research program started in [Frenkel-1. (2012)]
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Positive Representations of U, (gr)

Positive Representations of U, (gr)

Research program started in [Frenkel-1. (2012)]

e Representations by positive operators on Hilbert space.
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Positive Representations of Uq (gr)

Positive Representations of U, (gr)

Research program started in [Frenkel-I. (2012)]

o Representations by positive operators on Hilbert space.
o Generalization of Teschner’s representations of U, (sl(2,R))
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Positive Representations of Uq (gr)

Positive Representations of U, (gr)

Research program started in [Frenkel-I. (2012)]

o Representations by positive operators on Hilbert space.
o Generalization of Teschner’s representations of U, (sl(2,R))
=7 Closure under taking tensor product A, : [Schrader-Shapiro 2018]
Sm ~ o Braiding structure [I. 2012]
o Peter-Weyl Theorem A,,: [I.-Schrader-Shapiro 2020

g 7
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Positive Representations of Uq (gr)

Positive Representations of U, (gr)

Research program started in [Frenkel-I. (2012)]

o Representations by positive operators on Hilbert space.

o Generalization of Teschner’s representations of U, (sl(2,R))
o Closure under taking tensor product A,: [Schrader-Shapiro 2018]
o Braiding structure [I. 2012]
o Peter-Weyl Theorem A,,: [I.-Schrader-Shapiro 2020

e =“Quantization of principal series representations”
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Positive Representations of U, (gr)
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Positive Representations of U, (gr)

Research program started in [Frenkel-I. (2012)]
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Positive Representations of Uq (gr)

Positive Representations of U, (gr)

Research program started in |Frenkel-1. (2012)]

o Representations by positive operators on Hilbert space.

o Generalization of Teschner’s representations of U, (sl(2,R))
o Closure under taking tensor product A,: [Schrader-Shapiro 2018]
o Braiding structure [I. 2012]
o Peter-Weyl Theorem A,,: [I.-Schrader-Shapiro 2020

e =“Quantization of principal series representations”

o Constructed for all semisimple Lie types.

Construction:

o Lusztig’s total positive space L?((G/B)so) ~ LZ(RNZZ(“’O))

>0
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Positive Representations of Uq (gr)

Positive Representations of U, (gr)

Research program started in |Frenkel-1. (2012)]

o Representations by positive operators on Hilbert space.

o Generalization of Teschner’s representations of U, (sl(2,R))
o Closure under taking tensor product A,: [Schrader-Shapiro 2018]
o Braiding structure [I. 2012]
o Peter-Weyl Theorem A,,: [I.-Schrader-Shapiro 2020

e =“Quantization of principal series representations”

o Constructed for all semisimple Lie types.

Construction:
o Lusztig’s total positive space L?((G/B)so) ~ LZ(R;VOZZ(MO))
e Mellin transformation: L2 (Rgo) ~ L2(RYN)
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Positive Representations of Uq (gr)

Positive Representations of U, (gr)

Research program started in |Frenkel-1. (2012)]

o Representations by positive operators on Hilbert space.

o Generalization of Teschner’s representations of U, (sl(2,R))
o Closure under taking tensor product A,: [Schrader-Shapiro 2018]
o Braiding structure [I. 2012]
o Peter-Weyl Theorem A,,: [I.-Schrader-Shapiro 2020

e =“Quantization of principal series representations”

o Constructed for all semisimple Lie types.

Construction:
o Lusztig’s total positive space L2((G/B)so) ~ L*(R
o Mellin transformation: L*(RY)) ~ L2(RY)

e U(g) differential operator ~ finite difference operator

>0

Ivan Ip (HKUST) Parabolic Positive Representations March 16, 2021 6 /50



Positive Representations of Uq (gr)

Positive Representations of U, (gr)

Research program started in |Frenkel-1. (2012)]
o Representations by positive operators on Hilbert space.
o Generalization of Teschner’s representations of U, (sl(2,R))
o Closure under taking tensor product A,: [Schrader-Shapiro 2018]
o Braiding structure [I. 2012]
o Peter-Weyl Theorem A,,: [I.-Schrader-Shapiro 2020
e =“Quantization of principal series representations”

o Constructed for all semisimple Lie types.

Construction:
o Lusztig’s total positive space L?((G/B)sq) ~ L? (RJ:OZZ(’LU()))
e Mellin transformation: L2(RY) ~ L3(RYN i
(RZo) (RT) o= (L)E

e U(g) differential operator ~ finite difference operator

e Quantization ~ positive operators e;, f;, K; € Uy(gr)
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Positive Representations of U, (gr)

Positive Representations of U, (gr)

Rescale generators by (¢ = ™ b e (0, 1))\ Q
er =—i(q—q By, f=—ilg—q ")Fy
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Positive Representations of Ug (gr)

Positive Representations of U, (gr)
Rescale generators by (¢ = ¢™”, b e (0,1))

er=—i(g—q VB, f.=—ilg—q HF

Theorem (I. (2012))

There exists a family of irreducible representations Py of Uy(gr):
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Positive Representations of Ug (gr)

Positive Representations of U, (gr)
Rescale generators by (¢ = ¢™”, b e (0,1))

er=—i(g—q VB, f.=—ilg—q HF

Theorem (I. (2012))

There exists a family of irreducible representations Py of Uy(gr):
o Parametrized by A € R>oPT ~ Rgﬁmnkg

o Positivity: {e;, fi, K;} are represented by positive, essentially
self-adjoint (unbounded) operators on L?*(RY)
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Positive Representations of Uy (gr)

Positive Representations of U, (gr)

Rescale generators by (¢ = e’”bz, be(0,1))
er=—ilg—q By, fx=—ilg—q ")Fk

Theorem (1. (2012))

There exists a family of irreducible representations Py of Uy(gr):
o Parametrized by A € R>oPT ~ Rgﬁmnkg
o Positivity: {e;, fi, K;} are represented by positive, essentially
self-adjoint (unbounded) operators on LQ(RN )

e e, f;, K; are expressed in tc;rms of Laurent polynomials of
{eﬂbwkae%bpk}k]v:l P= Zﬂg;‘ ezﬂ f_ﬂ(,,) = L(x-'b)
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Positive Representations of Uy (gr)

Positive Representations of U, (gr)

Rescale generators by (¢ = e’”bz, be(0,1))

er=—i(g—q VB, f.=—ilg—q HF

Theorem (I. (2012))

There exists a family of irreducible representations Py of Uy(gr):
o Parametrized by A € R>oPT ~ Rgzmnkg

o Positivity: {e;, fi, K;} are represented by positive, essentially
self-adjoint (unbounded) operators on L?*(RY)

e e;,f;, K; are expressed in terms of Laurent polynomials of
-1
{eﬂbxk’ 627rbpk }szl b &6

e Characterized by modular double structure (Langland’s duality)

v
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Positive Representations of Uq (gr)

Positive Representations of U, (gr)

Rescale generators by (¢ = e“bz, be(0,1))
er=—ilg—q By, fx=—ilg—q ")Fk

Theorem (1. (2012))

There exists a family of irreducible representations Py of Uy(gr):
o Parametrized by A € R>oPT ~ Rgzmnkg

o Positivity: {e;, fi, K;} are represented by positive, essentially
self-adjoint (unbounded) operators on L?*(RY)

e e;,f;, K; are expressed in terms of Laurent polynomials of
wbxy 2wbpp \ N
{6 , € }k:l

e Characterized by modular double structure (Langland’s duality)

e One can recover any finite dimensional irreducible representations
of Uy(g) by appropriate analytic continuation on .

v
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Example: U,(sl3)

s of Uq (gr)

oordinates on (G/B)so:

P ACY) X2(b) xi(c)

1 a O 1 0 O 1 c
0O 1 0 0o 1 b 0o 1
o 0 1 o 0 1 0 0

0
0
1

I
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Positive Repr 1itations of Uy (gr)

Example: U,(sl3)

Coordinates on (G/B)xo:
1 a 0\ /1 0 0\ /1 ¢ 0 1 0 o0

(0 1 0) (0 1 b) (0 1 0) . <0 1 0) a,b,c>0
oo 1/\o o 1/\o o 1 0o ot 1

1 0 0 1 a+abt 0 1 0 0 1 ¢ 0
b

0 o <0 1 0) 1 i (0 1 0)

0 0 (14 bt)~ 0 0 1 0O 0 0

L X e
T % s

o
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Example: U,(sl3)

Coordinates on (G/B)o
1 a 0\ /1 0 0\ /1 ¢ 0 1 0 o0
0 1 0) (0 1 b) (0 1 0)-(0 1 0) a,b,c>0
oo 1/\o o 1/ \o o 1 0ot 1
1 0 0 1 0 0 1 a+4abt 0 1 0 0 1 ¢ 0
= (o 1 0 140t 0 <0 1 0) 0 1 (0 1 o)
0 1 1 0 0 (1+0bt)~1 0 0 1 1

2. flarb,c) = (14 bt)? f(a -+ abt, 1fbt o),

|
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Positive Representations of Uq (gr)

Example: U,(sl3)

Coordinates on (G/B)sg
a O 1 0o o0 1 c 0 1 0 O
1 o) (0 1 b) (0 1 0)-(0 1 0) a,b,c>0
0 1 0O 0 1 0o 0 1 0 t 1
1 0 0
— 0 1
I e T

b
tFo _ 2\
e fla,b,c) = (1+bt)" f(a + abt, —— b c),
0 0

ab— — b>— + b\
=0 oa 0b +

Ivan Ip (HKUST)

Parabolic Positive Representations

March 16, 2021 8 /50



Positive Represent ns of Uy (gr)

Example: U, (sl3)

o 50
Fg—ab%—b %-ﬁ-b)\
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Positive Representations of U, (gr)

Example: U, (sl3)

o 50
Fg—ab%—b %—Fb)\

(Formal) Mellin transform: F(u,v,w) := / f(a,b,c)a“b’e” dadbdc

Fy: Fu,v,w) = 2 +u—v+ 1)F(u,v —1,w)
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Positive Representations of Uq (gr)

Example: U,(sl3)

0 0
Fy =ab— — b’ — + bA
2= ap, ot
(Formal) Mellin transform: F(u,v,w) := /f(a,b, ¢)a"b’c”dadbdc
n -A
6'3 =9-1
Fy o F(u,v,w) L)\—i—u—v—l—g}" -

Quantum Twist (n — [n]; + “Wick’s rotation”) W= —_G w

Py = ( 1 ) (eﬂb(2A+u7v+2pv) + eﬂ'b(72)\7u+v+2pv))
q—4q

-1
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Positive Representations of Ug (gr)

The goal of this talk

Parabolic positive representations is a new family of positive
representations of Us(gr) based on quantizing the parabolic induction
representations on L*((G/P)so), where P C G is a parabolic subgroup.

Ivan Ip (HKUST) Parabolic Positive Representations March 16, 2021 10 /50



Positive Representations of Uy (gr)

The goal of this talk

Definition

Parabolic positive representations is a new family of positive
representations of Us(gr) based on quantizing the parabolic induction
representations on L*((G/P)so), where P C G is a parabolic subgroup.

e It answers some combinatorial mysteries of quantum group
embedding (cluster realization)

o Gives a new realization of the evaluation module of (;[n)
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Quantum Cluster Variety

Quantum Cluster Variety
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Quantum Cluster Variety

Quantum Torus Algebra

“Quantization of cluster X' variety” [Fock-Goncharov]
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(ORERIA NG NSTSMEI SN Quantum Torus Algebra

Quantum Torus Algebra

“Quantization of cluster X" variety” [Fock-Goncharov]

emiene S
Seed Q = (Q, Qo, B):
e Q = nodes (finite set)
° Qo C Q = frozen nodes

o B = (b;;) exchange matriz (|Q| x |Q|, skew-symmetric, 3Z-valued)
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(ORERIRINOI TSI STEIAAN Quantum Torus Algebra

Quantum Torus Algebra

“Quantization of cluster X" variety” [Fock-Goncharov]
Seed Q = (Q, Qo, B):

e Q = nodes (finite set)

° Qo C Q = frozen nodes

o B = (b;;) exchange matriz (|Q| x |Q|, skew-symmetric, 3Z-valued)

Quantum torus algebra XqQ = algebra generated by {X;}icq over Clq]

such that
XZ‘X]' = q_Qbinin

X; = quantum cluster variables
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(ORERIRINOI TSI STEIAAN Quantum Torus Algebra

Quantum Torus Algebra

“Quantization of cluster X’ variety” [Fock-Goncharov]
Seed Q = (Q,Qo, B):

e Q = nodes (finite set)

° Qo C Q = frozen nodes

o B = (b;;) exchange matriz (|Q| x |Q|, skew-symmetric, 3Z-valued)
Quantum torus algebra XqQ = algebra generated by {X;}icq over Clq]

such that
XZ‘X]' = q_Qbinin

X; = quantum cluster variables

. Y. = va .J
Exchange Matrix B ~» Quiver. [\j ~~~~~~~ >|T)__] X X5 =g 29K

O——O@  xn-rnn
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(ORERIRINOI TSI STEIAAN Quantum Torus Algebra

Quantum Torus Algebra

“Quantization of cluster X’ variety” [Fock-Goncharov]

Seed Q = (Q, Qo, B):
o Aq = Z-Lattice with basis {e;}icq

o (—,—) skew-symmetric form, (e;,e;) := bjj.

Quantum torus algebra XqQ =algebra generated by {X\}rerq over (C[q%]

such that
Xop = q()"M)XAXu

X’i = Xeia Xil,iz,...,ik = Xei1+ei2+~-+eik

Exchange Matrix B ~» Quiver. 9%%) =" Xiy |

O——0  xN-rwx
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(ORERIRINOI TSI STEIAAN Quantum Torus Algebra

Quantum Cluster Mutations

T,? := (non-commutative) field of fractions of XqQ.
Cluster mutation 1, induces pf : TqQ — T(?:

X! i=k
pl(X) =4 X H"’kz 1+ ¢ ' Xp) i # kb < 0
XTI (1 + ¢ X)™ i kb >0
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(ORERIRINOI TSI STEIAAN Quantum Torus Algebra

Quantum Cluster Mutations

T,? := (non-commutative) field of fractions of XqQ.
Cluster mutation 1, induces pf : TqQ — T(? :
X! i=k
WR) = X0+ K) ik <0
XTI (U 4+ g7 XY™ i # kb >0
Can be rewritten as
il = pff o i
X! i=k
/LZ(XZ) = X; 1 ?é k,br; <0
@I X XD £ ke by > 0
Hi = Ady,(x,)
VU,= quantum dilogarithm (nem wwfauf versimm =) hn"f“'a 7"""&""’)
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Quantum C

Polarization of X qQ

Recall ¢ = e™” such that |q| = 1.
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Quantum Cluster Variety

Quantum Torus Algebra

Polarization of X qQ

Recall ¢ = e™” such that |q| = 1.

Definition

A polarization of X;’Z is a choice of representation of the cluster
variables Xj, € XqQ of the form X, = €*™ such that

o z; is self-adjoint

e xy, satisfies the Heisenberg algebra relations

1
[z, 2] = 3.7 Vik>

acting on some Hilbert space Hq ~ L*(RY).

Remark

| \

Modular double X, acts by X,g”bilm’“ on Hq.

y
Ivan Ip (HKUST)
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Quantum Cluster Variety

Quantum Torus Algebra

Polarization of X qQ

For X1Xs = ¢*X5X1, we have O W = {C_“Ps /("4

X]_ — e27rb$ .
.rtp -
)(2 — e27rbp @ /n{ F
lt _ —th &l )(
. 2 1 d Xl 2 - Z ‘
acting on L*(R), where p = 5—1-. Vs t+elR.
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Quantum Cluster Variety

Quantum Torus Algebra

Polarization of X qQ

Example

For X1 X2 = ¢*?X2X1, we have

X]_ — e27rb:t

)(2 — e27rbp

acting on L?(R), where p = ﬁ%.

Proposition

e Different polarizations (with the same central characters) are
unitary equivalent (via Sp(2N)-action)
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Quantum Cluster

Quantum Torus Algebra

Polarization of X qQ

For X1 X2 = ¢*?X2X1, we have

X]_ — 6271'1)1

)(2 — e27rbp

acting on L?(R), where p = ﬁ%.

Proposition

e Different polarizations (with the same central characters) are
unitary equivalent (via Sp(2N)-action)

o Cluster mutations <— unitary transformation on Hq

Ivan Ip (HKUST)

Parabolic Positive Representations
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Quantum Cluster Variety

Quantum cluster variety

S=Riemann surface with marked points on 95 and punctures.
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(RERTI NG NEISIEREIVAN  Fock-Goncharov Xg, s-Space

Quantum cluster variety

S=Riemann surface with marked points on 95 and punctures.
Fock-Goncharov's Xg g-space= “(framed) local G-system”

e X s has Poisson cluster X variety structure ~ quantization Xg g
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(RERTI NG NEISIEREIVAN  Fock-Goncharov Xg, s-Space

Quantum cluster variety

S=Riemann surface with marked points on 95 and punctures.
Fock-Goncharov's Xg g-space= “(framed) local G-system”
e X s has Poisson cluster X variety structure ~ quantization Xg g

e To each triangle of ideal triangulation of S, assign a basic quiver.
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(RERTI NG NEISIEREIVAN  Fock-Goncharov Xg, s-Space

Quantum cluster variety

S=Riemann surface with marked points on 95 and punctures.
Fock-Goncharov's Xg g-space= “(framed) local G-system”
e X s has Poisson cluster X variety structure ~ quantization Xg’ g
e To each triangle of ideal triangulation of S, assign a basic quiver.

e G = PGLyy1: “n-triangulation”
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(RERTI NG UEISIEREIVAN  Fock-Goncharov Xg, s-Space

Quantum cluster variety

S=Riemann surface with marked points on 95 and punctures.
Fock-Goncharov's Xg g-space= “(framed) local G-system”
e X s has Poisson cluster X variety structure ~ quantization Xg’ g
e To each triangle of ideal triangulation of S, assign a basic quiver.

e G = PGLyy1: “n-triangulation”

Qﬁ [4

(Full generality: [I. (2016)], [Le (2016)], [Goncharov-Shen (2019)])
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(ORERTI NG LTS IEREIVAN  Fock-Goncharov Xg, s-Space

Basic Quiver

[I. (2016), Goncharov-Shen (2019)]
Definition
Elementary quiver

o Ji(i), i, kel

° Q@=0Qo=(I\{i})u{i}U{ir} Ufkc}

aij
Cirg = Cjir = v Ciip = Cipke = Cheit = 1

o J(i): without {k.}.
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(RERTI NG NEISIEREIVAN  Fock-Goncharov Xg, s-Space

Basic Quiver

[I. (2016), Goncharov-Shen (2019)]

Elementary quiver
o H(i), i=(i1,...,%m) reduced words

e Q=1

0 otherwise To:(121321)

i {0 B
1]
( (X. j( erdz( d)_

o ﬁj = Sy Sipyo1 " S (Oéij), o; € A+
o (Ifi =iy, orientation of Dynkin diagram) < e¢tdytds & Opeds

H (T

Ivan Ip (HKUST) Parabolic Positive Representations March 16, 2021
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Quantum Cluster Variety

Basic Quiver

[I. (2016), Goncharov-Shen (2019)]

Basic Quiver

e Q(i), i=(i1,...,7m) reduced words
e Q= J#(il) * J?(ig) SRERE" J?&(im) « H(i)
it { B0 15—

J(i;)  otherwise

Ivan Ip (HKUST) Parabolic Positive Representations



Quantum Cluster Fock-Goncharov Xg, g-Space

Basic Quiver

Example

g=sl,i=(3,2,1). By = «weaztds
B, = of toa
33 =)

Vi \
\

5w o

Ivan Ip (HKUST) Parabolic Positive Representations March 16, 2021 21 /50



(RERTI NG NEISIEREIVAN  Fock-Goncharov Xg, s-Space

Basic Quiver

a=sl;, i0=1(3,2,1,3,23).
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(ODNEVI NI NERSEVEREINAN Embedding of Ug (sl )

Example: Type A, Case

Amalgamation of 2 quivers
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(ODNEVI NI NERSEVEREINAN Embedding of Ug (sl )

Example: Type A, Case

Dy, -quiver ~ X 1= Xy, [Schrader-Shapiro]

t:Dy(slpt1) — Xo
Ug(slns1) = Xo/(u(Ki)u(KG) = 1)
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(ODNEVI NI NERSEVEREINAN Embedding of Ug (sl )

Example: Type A, Case

Etybedding of F; € g, — X

f1 =X1+X12+ X123+ X1,234+X1,23,45+X1,234,5,6 < CLZ][X‘ ]
fo = Xg + Xg,9 + Xg,9,10 + X8,9,10,11
f3 = X135 + X13,14

’ ! !
K] = X1,2,3,4,5,6,7 K, = X8,9,10,11,12 K3 = X13,14,15
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(ONEVI NG NEIS VIR EINAN Embedding of Ug (sl )

Example: Type A, Case

Embedding of F; € Dg, — Xo

el = X7+ X716
ez = X12 + Xi2,6 + X12,6,17 + X12,6,17,2
e3 = X15 + Xi15,11 + X15,11,5 + X15,11,5,18 + X15,11,5,18,3 + X15,11,5,18,3,9

K1 = X7,16,1 Ko = X12,6,17,2,8 K3 = X15,11,5,18,3,9,13
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Quantum Cluster Variety

Positive Representations of U, (gr)

Theorem (Schrader-Shapiro, 1. (2016))
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(ODNEVI NI NERSEVEREINAN Embedding of Ug (sl )

Positive Representations of U, (gr)

Theorem (Schrader-Shapiro, 1. (2016))
e There exists an embedding g W{ —{7[32,

Dy(9) = Ao

corresponding to the quiver Dy associated to @

o We recover the positive representations Py =~ ’H@
polarization of X .

through a

Ivan Ip (HKUST) Parabolic Positive Representations
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(OREST NGNS IEIS VA Embedding of U (sln)

Positive Representations of U, (gr)

Theorem (Schrader-Shapiro, 1. (2016))

e There exists an embedding

Dy(9) = Ao

corresponding to the quiver Dy associated to @

o We recover the positive representations Py ~ Hcy through a
polarization of X .

| A

Theorem (1. (2016))

o The generators e;, f;, K; are represented by positive polynomials
(i.e. over N[q,q™']) in the cluster variables X; € Xg.

J
Ivan Ip (HKUST) Parabolic Positive Representations March 16, 2021 24 /50




(ODNEVI NI NERSEVEREINAN Embedding of Ug (sl )

Positive Representations of U, (gr)

Theorem (Schrader-Shapiro, 1. (2016))

e There exists an embedding

Dy(9) = Ao

corresponding to the quiver Dy associated to @

o We recover the positive representations Py ~ Hcy through a
polarization of X .

| A

Theorem (1. (2016))

o The generators e;, f;, K; are represented by positive polynomials
(i.e. over N[q,q™']) in the cluster variables X; € Xg.

o The generators e;, f;, K; are labeled by paths on the Dy quiver.

J
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(ODNEVI NI NERSEVEREINAN Embedding of Ug (sl )

Positive Representations of U, (gr)

Theorem (Schrader-Shapiro, 1. (2016))

e There exists an embedding

Dy(9) = Ao

corresponding to the quiver Dy associated to @

o We recover the positive representations Py ~ Hcy through a
polarization of X .

v

Theorem (1. (2016))

o The generators e;, f;, K; are represented by positive polynomials
(i.e. over N[q,q™']) in the cluster variables X; € Xg.

o The generators e;, f;, K; are labeled by paths on the Dy quive?_)

. . . . Ayl
o f; paths are simple - coincide with Feigin’s homomorphism. «>€<T?
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Quantum Cluster Variety Embedding of Uy, (slyn)

Eg embedding

ip = (3 43 034 230432 12340321 5432103243054321)

SN

HINSY

I

|
\
L]

!

|

|
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(ONEVI NG NEIS VIR EINAN Embedding of Ug (sl )

Eg¢ embedding

ip = (3 43 034 230432 12340321 5432103243054321)
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Minimal Positive Representation for

U, (sl(n+ 1,R))
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Minimal Positive Representation

Minimal Positive Representation

e Parabolic subgroups «— J C [
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Minimal Positive Representation

Minimal Positive Representation

e Parabolic subgroups «— J C [
e Pj:= B_Ly, Levi subgroup L; = (T, Uj+, U )jes

Ivan Ip (HKUST) Parabolic Positive Representations



Minimal Positive Representation

Minimal Positive Representation

e Parabolic subgroups «— J C [
e Pj:= B_Ly, Levi subgroup L; = (T, Uj+, U )jes
o Py:=D_.
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Minimal Positive Representation

Minimal Positive Representation

e Parabolic subgroups «— J C [
e Pj:= B_Ly, Levi subgroup L; = (T, Uj+, U )jes
o Py:=D_.

Bample

For G=SLy, J={1,2} CI=1{1,2,3}
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Minimal Positive Representation

Minimal Positive Representation

e Parabolic subgroups «— J C [
e Pj:= B_Ly, Levi subgroup L; = (T, Uj+, U )jes
o Py:=D_.

Bample

For G=SLy, J={1,2} CI=1{1,2,3}

SEH

* ¥ ¥ ¥
* % %k ¥
R IR
* OO0 O
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Minimal Positive Representation Construction

Minimal Positive Representation

e Parabolic subgroups «— J C [
e Pj:= B_Ly, Levi subgroup L; = (T, Uj+, Uj_>]‘€]
o Py:=D_.

Eample

For G=SLy, J={1,2} CI=1{1,2,3}

(G/Pj)>0 = (

* ¥ X ¥
* ¥ ¥ ¥
* k¥ ¥

* OO0 O
~_ —

* ¥ %k ¥
* ¥ k¥
* X Kk ¥
* OO0 O
o= o o

0
0
el a,b,ec >0
1

coow~
cor~e

v
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Minimal Positive Representation Construction

Minimal Positive Representation

e Parabolic subgroups «— J C [
e Pj:= B_Ly, Levi subgroup L; = (T, Uj+, Uj_>]‘€]
o Py:=D_.

For G=SLy, J={1,2} CI=1{1,2,3}

* * * 0
* * * 0
Py= * * * 0
* ok ok %
* * * 0 1 a O 0
* ok * 0 0 1 b 0
(G/P)s>o=1, 4+ « ollo o 1 <l a,b,c>0
* * * * 0 0 0 1

25(©)z2(0)1 (@) = HR) AP Todll o s (<22 (a1 (2)),  mEU_hET
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Minimal Positive Representation Construction

Minimal Positive Representation

Previous recipe produces a representation Py for U, (sl(4,R)), (A € R)

7y (e)) = e™b(u=2pu) o mb(—u—2pu) X;

7 (eg) = em(Tutv=2py) | mh(u—v=2pu)

7 (e3) = em-vHw=2pu) | mbv—w=2pu)
7l (£1) = emb(—utor2p) | orb(u—vt2p)
W{(fz) = mh(—vtwt2py) | mb(v—wt2py)
7 (F3) = ™AW H2pu) 4 omb(—2Atwt2pu)
W{(Kl) — mb(—2u+v)
7 (Kyp) = em™u—2viw)
1) (Kjg) = em(v—2u+2Y)

acting on L?(R3) as positive self-adjoint operators.
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Minimal Positive Representation Construction

Minimal Positive Representation

Ao K

D(i) :=

e1 = X3+ X3,0 K1 =X30,1
ez = X¢ + Xo,2 K2 = Xg,2,4
ez = X9 + Xo 5 K3 = Xg,5,7
f1=X1+X12 Ki=Xi23
fo=Xa+ X455 Kjy=Xas6
fa=X7+ X738 Kj = X789

. _ —4mwbA
Central character: m(Xo2538) =€
Ivan Ip (HKUST) Parabolic Positive Representations March 16, 2021
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Minimal Positive Representation Construction

Minimal Positive Representation

Theorem (1. (2020))

The polarization of the quiver D(i) fori= (n,...,3,2,1) gives a
representation P3 of Uy(sl(n + 1,R)) acting on L2(R™) as positive
self-adjoint operators.

/N
o

X

A

e
\}

o
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Minimal Positive Representation

Minimal Positive Representation

Theorem (1. (2020))

o The non-simple generators
eq =Ty - Ti,_,(ex) pos. self ad.

fo =T T, (fk)

1s non-zero, where T; = Lusztig’s braid group action.
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Minimal Positive Representation Construction

Minimal Positive Representation

Theorem (1. (2020))

@ The non-simple generators
ea = Tiy -+ Ty, (ek)

fo =T, Ty, (f)
1s non-zero, where T; = Lusztig’s braid group action.

o The universal R operator is well-defined

R=K H gb(ea & fa)
acd /\_ fh‘l”‘{‘w" Jl{% .
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Minimal Positive Representation Construction

Minimal Positive Representation

Theorem (1. (2020))

@ The non-simple generators
ea = Tiy -+ Ty, (ek)

fo =T, Ty, (f)
1s non-zero, where T; = Lusztig’s braid group action.

o The universal R operator is well-defined

R=K [] slea®fa)

a€<1>+

o The Casimirs Cy acts by real-valued scalar, and lie outside the
positive spectrum of the usual positive representations.

v
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Minimal Positive Representation

Casimirs

Example

Uy (sI(3,R)), the possible action of (Cy1,C2) (by scalars) on Py and Py :

PA; I)Z
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Minimal Positive Representation

Evaluation Module of U, (sl, 1)

/N

o _,a_..-o—’f)/
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Minimal Positive Representation

Evaluation Module of U, (sl, 1)

- = >

- =
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Minimal Positive Representation Construction

Evaluation Module of (sl 1)
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Minimal Positive Representation Construction

Evaluation Module of U, (sl, 1)

Theorem (I. (2020))

The positive representation of Uy (s?[nﬂ) defined by the polarization of
the previous quiver is unitarily equivalent to Jimbo’s evaluation module
PV, peR g — E

uq(f/‘\[n-‘rl) — uq(ﬁ[n-i-l)

of the minimal positive representations 775\7 of Ug(slp11), where

1
e = n(Dg* Dy)

(Do =product of all middle vertices, D1= product of all right vertices.)
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Minimal Positive Representation Construction

Positive representation of U, (sly)

Example

4 G) 6
f0:X1+X172 80=X3+X375
fi =Xy + X475 e = Xg + X672

Serre relation (apy = ajgp = —2):

XPXG — Bl XXX + Bl X X; X7 — X; X} =0,  i#j
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Minimal Positive Representation

General Construction
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Minimal Pos e Representatio Construction

Main Theorem

Parabolic induction <— truncating iy C iy where iy, iy are the longest
word of the Weyl groups W; C W.

wo = W W

w+—1
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Minimal Positive Representation Construction

Main Theorem

Parabolic induction <— truncating iy C iy where iy, iy are the longest
word of the Weyl groups W; C W.

W5[4 C W5[5

i =(1,2,1,3,2,1,4,3,2,1)
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Minimal Positive Representation Construction

Main Theorem

Parabolic induction <— truncating iy C iy where iy, iy are the longest
word of the Weyl groups W; C W.

wo = W W

w+—1

W5[4 C W5[5

i = 41,2,1,3,2,1 4,3,2,1)

Observe that 5 ¢

Qi) = Q(iy) * Q)
In general, we have realization of U,(gr) on the quantum torus algebra
associated to the symplectic double D(i).
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Minimal Positive Representation Construction

Main Theorem
Theorem (I. (2020))

o There is a homomorphism O°f @
ab v

Dy(g) — AP

such that the image of universally Laurent polynomials.
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Minimal Positive Representation Construction

Main Theorem
Theorem (1. (2020))

o There is a homomorphism

Dy(g) — X(P ®

such that the image of universally Laurent polynomials.

o A polarization of X,P @ induces a family of irreducible
representations 735\] of Uy(gr) parametrized by X € RV g5 positive
self-adjoint operators on L?(R1@)).

<
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Minimal Positive Representation Construction

Main Theorem
Theorem (1. (2020))

o There is a homomorphism

Dy(g) — X(P ®

such that the image of universally Laurent polynomials.

o A polarization of X,P @ induces a family of irreducible
representations 735\] of Uy(gr) parametrized by X € RV g5 positive
self-adjoint operators on L?(R1@)).

The parabolic positive representations 735\] is obtained as a quantum
twist of the parabolic induction, by ignoring the variables u;
corresponding to the Levi subgroups Ly of Py in the quotient G/Pj.

v
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Minimal Positive Representation Construction

Main Theorem
Theorem (1. (2020))

o There is a homomorphism

Dy(g) — X(P ®

such that the image of universally Laurent polynomials.

o A polarization of X,P @ induces a family of irreducible
representations 735\] of Uy(gr) parametrized by X € RV g5 positive
self-adjoint operators on L?(R1@)).

The parabolic positive representations 735\] is obtained as a quantum
twist of the parabolic induction, by ignoring the variables u;
corresponding to the Levi subgroups Ly of Py in the quotient G/Pj.

< setting formally e™ui = 1 gnd eT™Pi = ().

v
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Minimal Positive Representation

Idea of Proof

Construction

The Heisenberg double Hf(g) := (e £5 KE K/F) satisfying

e, 1] le; . £ ] _
e L

q—4q
and other standard quantum group relations

Ivan Ip (HKUST)
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Minimal Positive Representation Construction

Idea of Proof

Definition

The Heisenberg double 7-[,:1'[ (g) := (e;t, fii, K;t,Kgi> satisfying
e}, f]] + Lo 1] _
e R

and other standard quantum group relations.

Proposition

The embedding Dy(g) < xPU0) X(;Q(igp) ® 20 decomposes as

ei=e +K'e;, f,=f +K, f' @

— + —
~\7

where "} (g) = 1® XqQ(iO), H, (9) — XqQ(igp) ®1 <

Ivan Ip (HKUST) Parabolic Positive Representations March 16, 2021
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Minimal Positive Representation

Idea of Proof

Construction

The generalized Heisenberg double HZE,,(g) :

(e, £ K5 K)

= 6K+ wi K7, G g1 = 0K~ WK

and other standard quantum group relations, where w;; € C.

Proposition

| \

If ’H,:]'fw(g) are commuting copies, then

e = e;-" + K;-"ei_, fi =1 + K;_fiJr
K = K/K; K, =K K|

gives a homomorphic image of Uy(g).

Ivan Ip (HKUST)
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Minimal Positive Representation Construction

Idea of Proof

Let J C I. The double Dynkin involution of i € I is the unique index

** € I such that
WeS; = Sj*xWQ = S+ WJW = W jS;**W.

where i*Ws =i ifi ¢ J.

E’i | @ L >

DSC’ Ee ! cj\ ¥
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Minimal Positive Representation Construction

Decomposition Lemma W

Lemma (Decomposition Lemma)

The embedding H (g) — XqQ(iO) C XqQ(iJ) ® X(PG) can be decomposed

into the form

—_— 7 J_
ef =&+ Kicj, it =1+ K Fs
K = KK, K" =K/'K]

where e/ = f/ =0 and K = K{J =14fi ¢ J, such that

Ivan Ip (HKUST)
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Minimal Positive Representation

Decomposition Lemma

Construction

Lemma (Decomposition Lemma)

The embedding H (g) — xQ00)

; XqQ(iJ ) ® X(PG) can be decomposed
into the form

e* =e_i+Feﬁ]**,

=1+ KT,

+ J7=7
Kt = K'K]

where eﬁ]:fszo (def]—

—K(le if i ¢ J, such that
o X7 € X2 01 and X; € 19 X2 for X =, f, K, K’
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Minimal Positive Representation

Decomposition Lemma

Construction

Lemma (Decomposition Lemma)

The embedding H (g) — Xq(’)(io) C XqQ(i“’) ® XqQG) can be decomposed

into the form

e* =e_i+Feﬁ]**,

=1+ KT,

+ J7=7
Kt = K'K]

where eﬁ]:f-‘]:0 (def]—

—K(le if i ¢ J, such that
o X7 € X2 01 and X; € 19 X2 for X =, f, K, K’

o {e/, i‘],Ki],KZ{J} ~ 'H;‘(gJ) n XqQ( ) where grCyg
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Minimal Positive Representation

Construction

Decomposition Lemma

Lemma (Decomposition Lemma)

The embedding H (g) — XqQ(iO) C XqQ(i“’) ® XqQG) can be decomposed

into the form

el =& + Kie}, fir= #+ KT,
K = KK, K" =K/'K]
where e/ = f/ =0 and K = K’J =14fi ¢ J, such that
o X7 € X2 01 and X; € 19 X2 for X =, f, K, K’
o {e/, i‘],Ki],KZ{J} ~ 'H;‘(gJ) n XqQ( ) where g7 Cg.

o We have on XqQG) for some w;j € {0,1},

T LKD) 2 HEu(e) )
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Minimal Positive Representation

Proof of Lemma

e Decomposition of f;, K/ follows from explicit calculation using
Feigin’s embedding.
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Proof of Lemma

e Decomposition of f;, K/ follows from explicit calculation using
Feigin’s embedding.

@ Decomposition of e;, K; requires combinatorics of Coxeter moves:
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Minimal Positive Representation Construction

Proof of Lemma

e Decomposition of f;, K/ follows from explicit calculation using
Feigin’s embedding.

@ Decomposition of e;, K; requires combinatorics of Coxeter moves:

Lemma (I. (2020))

If l(s;ws;) = l(w), then there is a sequence of Coxeter moves that
brings the reduced word of w € W:

where the sequence of Coxeter moves splits into 2 stages, the second of
which increase in indices consecutively from first to last letter.
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Minimal Positive Representation

Proof of Lemma

Example

g=5[5:i:@2,1,3,4,3,2,3,1,2)«»( ........... 7
Stage 1:

(17 27 ]‘737 47 37 27 3’ 1’ 2) ~ (]" 27 1737 27 ]‘747 37 27 1)
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Minimal Positive Representation Construction

Proof of Lemma

g=sl5-1=(1,2,1,3,4,3,2,3,1,2) ~ (ceeuue.e. ,4)7
Stage 1:

(17 27 ]‘7 37 47 37 2’ 3’ 1’ 2) ~ (17 27 17 37 27 17 47 37 2’ ]')
Stage 2:

(L.2.1,3,2,1,4,3,2,1
«42,12 2,1,4,3,2,1
(2,1,3, 2 ,3,1,4,3,2,1
M(2,132,1,_J_,_J_
(
(

>

)
)
)
1)

~(2,1,3,2,1,4,3,4,2,1)

¢

2,1,3,2,1,4,3, 2 /_)
~(2,1,3,2,1,4,3,2,1,4
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Minimal Positive Representation Construction

Example: FEj

AICAQCA3CD4C.
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Minimal Positive Representation

Example: FEj
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Minimal Positive Representation Construction

Example: By

fl? O
ﬂlé 0 >

J={1,2,3}y c I ={1,2,3,4}, 1 = short
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Minimal Positive Representation

Further Discussions

o Lusztig’s braid group action 7T} as cluster mutations on Q(i)?

€e; < fi*, fi > €
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Minimal Pos e Representatio Construction

Further Discussions

o Lusztig’s braid group action 7T} as cluster mutations on Q(i)?

€e; < fi*, fi > €5+

o Geometric meaning of the cluster structure of D(i)
o partial configuration space Confg;(A). [Goncharov-Shen]
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Minimal Positive Representation Construction

Further Discussions

o Lusztig’s braid group action 7T} as cluster mutations on Q(i)?

€e; < fi*, fi > €5+

o Geometric meaning of the cluster structure of D(i)
o partial configuration space Confg;(A). [Goncharov-Shen]
e Combinatorial description of U, (g) — X??

o 7(e;), m(f;) are polynomials in X;, not Laurent.
o Type A,: counting of cycles in dual plabic graphs.
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Minimal Positive Representation BOSiaaitdstesss

Further Discussions

o Lusztig’s braid group action 7T} as cluster mutations on Q(i)?

€e; < fi*, fi > €5+

o Geometric meaning of the cluster structure of D(i)
o partial configuration space Confg;(A). [Goncharov-Shen]

e Combinatorial description of U,(g) — X??

o 7(e;), m(f;) are polynomials in X;, not Laurent.

o Type A,: counting of cycles in dual plabic graphs.
@ Tensor product decompositions of ’P;\] ® P2

o R matrix well-defined = new braided tensor category?
o Study the spectrum of Casimir operators Cy.
o Proved for J =0 and g = sl,1. [Schrader-Shapiro]
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Minimal Positive Representation BOSiaaitdstesss

Further Discussions

o Lusztig’s braid group action 7T} as cluster mutations on Q(i)?

€e; < fi*, fi > €5+

o Geometric meaning of the cluster structure of D(i)
o partial configuration space Confg;(A). [Goncharov-Shen]

e Combinatorial description of U,(g) — X??

o 7(e;), m(f;) are polynomials in X;, not Laurent.

o Type A,: counting of cycles in dual plabic graphs.
@ Tensor product decompositions of 73;\] ® P2

o R matrix well-defined = new braided tensor category?
o Study the spectrum of Casimir operators Cy.
o Proved for J =0 and g = sl,1. [Schrader-Shapiro]

o Generalization to other modules of affine quantum groups U, (gr)?
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Minimal Positive Representation

Thank you for your attention!
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