Green forms, special cycles and modular forms

University of Alberta, GNTRT Seminar

Siddarth Sankaran (University of Manitoba) April 13 2021

Theta functions

- Let (V, Q) = quadratic space $/\mathbb{Q}$
- Assume (V, Q) positive definite, dim V = m even
- Fix $L \subset V$ lattice, $Q(L) \subset \mathbb{Z}$

Theta function:

$$\Theta_L(\tau) := \sum_{x \in L} e^{2\pi i Q(x)\tau} \qquad \tau \in \mathbb{C}, Im(\tau) > 0$$

Then $\Theta_L(\tau)$ is modular: $\exists \Gamma \subset \operatorname{SL}_2(\mathbb{Z})$ finite index s.t.

$$\Theta_L\left(\frac{a\tau+b}{c\tau+d}\right)=(c\tau+d)^{m/2}\Theta_L(\tau), \qquad \forall \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$$

[If L self-dual, can take $\Gamma = \mathrm{SL}_2(\mathbb{Z})$]

Theta functions

$$\Theta_L(\tau) = \sum_{x \in L} e^{2\pi i Q(x)\tau} = \sum_{n \ge 0} r_L(n) q^n \qquad q = e^{2\pi i \tau}$$

where $r_L(n) = \#\{x \in L \mid Q(x) = n\} = \text{representation number}$ (arithmetic)

• Moral: modularity of $\Theta_L(\tau)$ encodes subtle symmetries/relations between $r_L(n)$.

2

Siegel-Weil formula

• For simplicity, consider even unimodular lattices:

$$\mathcal{C} := \{L \subset V \mid L^{\vee} = L, Q(L) \subset \mathbb{Z}\}/\textit{isom}.$$

• Define Eisenstein series of weight k > 2, $s \in \mathbb{C}$, $Re(s) \gg 0$

$$E_k(\tau,s) := \sum_{\gamma \in \Gamma_{\infty} \setminus SL_2(\mathbb{Z})} \frac{Im(\gamma\tau)^{\frac{1}{2}(s-k+1)}}{(c\tau+d)^{2k}}, \qquad \Gamma_{\infty} = \left\{ \begin{pmatrix} 1 & n \\ 1 \end{pmatrix} \right\}$$

Theorem (Siegel, 1930's)

$$\sum_{L\in\mathcal{C}}\frac{1}{\#\mathrm{Aut}(L)}\Theta_L(\tau)=C\cdot E_{m/2}(\tau,m/2-1),$$

where $m = \dim V$ and C = explicit const

Vastly generalized by Weil using representation theoretic approach

Orthogonal symmetric spaces

- $F = \text{totally real field, embeddings } \sigma_1, \dots, \sigma_d \colon F \to \mathbb{R}$
- V = vector space over F
- $Q: V \to F$ quadratic form, **anisotropic**
- Signature condition: $V_i := V \otimes_{F,\sigma_i} \mathbb{R}$ is a quadratic space $/\mathbb{R}$. Assume: V_1 has signature (m-2,2), V_i is pos def for i>1

Symmetric space:

$$\mathbb{D}:=\{z\subset V\otimes_{F,\sigma_1}\mathbb{R}\ |\ \dim_{\mathbb{R}}(z)=2,\ Q|_z \text{ negative definite}\}$$

 \mathbb{D} is a cpx manifold, $\dim_{\mathbb{C}}(\mathbb{D}) = m-2$

Orthogonal Shimura varieties

- Fix lattice $L \subset V$
- For $\Gamma \subset O(L)$ sufficiently small, have Shimura variety:

$$X = X_{\Gamma} := \Gamma \backslash \mathbb{D}$$

X is projective, has model over some number field E

Examples:

- $V = \{A \in M_2(\mathbb{Q}) \mid tr(A) = 0\}$ $Q(A) = N \det A$ $L := \{\begin{pmatrix} a & b/N \\ c & -a \end{pmatrix} \mid a, b, c \in \mathbb{Z}\}.$ $\Longrightarrow \mathbb{D} \simeq \mathbb{H}, \text{ and } X = Stab(L) \backslash \mathbb{D} \simeq \Gamma_0(N) \backslash \mathbb{H}$
- Can also describe Hilbert modular surfaces, Picard surfaces, etc. in this way

Special cycles (Kudla)

$$\mathbb{D} := \{ z \subset V \otimes_{F,\sigma_1} \mathbb{R} \mid \dim_{\mathbb{R}}(z) = 2, \ Q|_{z} \text{ negative definite} \}$$

• Fix
$$n > 0$$
, let $x = (x_1, \dots, x_n) \in L^n$, $\Gamma_x = \operatorname{Stab}_{\Gamma}(x)$

$$\mathbb{D}_x := \{ z \in \mathbb{D} \mid z \perp x_i \text{ for } i = 1, \dots, n \},$$
 \leadsto obtain cycle $Z(x) \colon \Gamma_x \backslash \mathbb{D}_x \to \Gamma \backslash \mathbb{D}$

For
$$T = (T_{ij}) \in \operatorname{Sym}_n(F)$$
, let $\Omega(T) := \{x \in L^n | \langle x_i, x_j \rangle = T_{ij} \}$

$$Z(T) := \sum_{\substack{x \in \Omega(T) \\ \text{mod } \Gamma}} Z(x)$$

- If T positive semi def (+Z(T) non-empty) then codimZ(T) = rk(T)
- Z(T) is algebraic, defined over E

Generating series

Theorem (Kudla-Millson, special case)

$$\Theta_{KM}(\tau) := \sum_{T} \{Z(T)\}q^{T}, \qquad \{Z(T)\} \in H^{2n}_{dR}(X)$$

is a Siegel modular form (= automorphic form for $Sp_{2n}(F)$) of parallel scalar weight m/2.

Idea of proof: for $x \in V^n$, KM construct a closed diff form $\varphi_{KM}(x)$ that behaves like a Gaussian fn (i.e. exp decay in x), so can be used to form a theta fn $\tilde{\Theta}(\tau)$ valued in closed 2n forms (a priori modular).

Moreover
$$\{\sum_{x \in \Omega(T)} \varphi_{KM}(x)\} = \{Z(T)\}\$$
 so $\Theta_{KM}(\tau) = \{\tilde{\Theta}(\tau)\}.$

7

Generating series

Consider

$$\Theta_{CH}(\tau) := \sum_{T} [Z(T)]q^{T}, \qquad [Z(T)] \in CH^{n}(X)$$

Modularity results:

- n = 1: Borcherds, Yuan-Zhang-Zhang $(F \neq \mathbb{Q})$
- $F = \mathbb{Q}$, n > 1: W. Zhang + Bruinier-Raum
- $F \neq \mathbb{Q}$, n > 1: conditional proofs Kudla, Maeda

Arithmetic generating series

- Gross-Zagier: intepret as identity b/w arithmetic intersection # of Heegner divisors (= special divisors on X₀(N)) and derivative of L-function
- Kudla program: generalization to arithmetic models of orthogonal Shimura varieties.

Roughly: suppose have "nice" integral model \mathcal{X} over $Spec(\mathcal{O}_E)$, and "nice" classes $\widehat{\mathcal{Z}}(T)$ in arithmetic Chow gp of \mathcal{X} (more on this in a moment).

Then expect

$$\sum_{T}\widehat{\mathcal{Z}}(T)q^{T}$$

is modular

Arithmetic Siegel-Weil

 $\mathcal{X} = \text{nice model of } X = \Gamma \backslash \mathbb{D}, \ \widehat{\mathcal{Z}}(T) \text{ arithmetic cycle}$

• \exists "tautological" metrized bundle $\widehat{\omega}$ on X; assume extn to \mathcal{X}

Arithmetic Siegel-Weil conjecture (Kudla)

$$\sum_{T \in \mathit{Sym}_n(O_F)} \langle \widehat{\mathcal{Z}}(T), \widehat{\omega}^{m-n+1} \rangle q^T \sim C \cdot E'\left(\tau, \frac{m-n-1}{2}\right)$$

- $\bullet \ \langle \cdot, \cdot \rangle$ is an intersection pairing on arith Chow gp
- $E(\tau,s)$ Siegel Eisenstein series (= Eisenstein series for Sp_{2n})

Construction of models and arithmetic cycles is very complicated in general, but lots of evidence for conjectures in particular cases: e.g. Kudla-Rapoport-Yang (Shimura curves), works of Kudla, Rapoport, Howard, Bruinier, Yang, Li, Wei Zhang, many others...

Arithmetic Chow groups (Gillet-Soulé)

- \mathcal{X} = projective variety over "arithmetic ring" R(e.g. can take R = number field, O_F , $O_F[1/N]$, ...)
- $X = \mathcal{X}(\mathbb{C}) := [] \mathcal{X}_{\sigma}(\mathbb{C})$ $\sigma : \overline{R} \hookrightarrow \mathbb{C}$

An arithmetic cycle of codim n is a pair $\widehat{\mathcal{Z}} = (\mathcal{Z}, g)$:

- $\mathcal{Z} = \operatorname{codim} n \operatorname{cycle} \operatorname{on} \mathcal{X}$ (with \mathbb{C} -coeffs, say)
- $g \in D^{n-1,n-1}(X)$: degree (n-1,n-1) current
- **Green's equation:** \exists a smooth form ω s.t.

$$dd^{c}g + \delta_{\mathcal{Z}(\mathbb{C})} = [\omega]$$

$$[dd^{c} = \frac{1}{2\pi i}\partial \overline{\partial}]$$

$$\widetilde{\mathit{CH}}^n(\mathcal{X})_\mathbb{C} := \{\mathsf{arith}\ \mathsf{cycles}\}/\,\text{``rational equivalence''}$$

[
$$D^{n-1,n-1}(X) = \text{cts linear functionals on } A^{n',n'}(X), \ n' = \dim X - n + 1$$
]

Green currents for special cycles

Back to $X = \Gamma \setminus \mathbb{D}$, Z(T), etc. To define arith cycle $\widehat{\mathcal{Z}}(T)$, need to specify (independently)

- 1. integral models \mathcal{X} , $\mathcal{Z}(T)$
- 2. Green current g for $Z(T) = \mathcal{Z}(T)(\mathbb{C})$

(Garcia-S.) Construction of a current g(T, v) via Quillen's theory of superconnections:

- Depends on parameter $v \in Sym_n(F \otimes_{\mathbb{Q}} \mathbb{R})_{>0}$
- Functorial (e.g. O(n) invariance, compatible with embeddings of Sh vars)
- *-product identity: if Z(T), Z(T') intersect properly, then $g(T, v) * g(T', v') \equiv \sum_{S = \begin{pmatrix} T & * \\ * & T' \end{pmatrix}} g(S, (v))$

mod exact currents

Construction of g(T, v) (suppose T non-degenerate)

- Garcia: $\mathbb{D}_{x} = \text{zero locus of section of a Herm bundle on } \mathbb{D}$ $\Longrightarrow \text{Quillen: "super Chern form"} = \varphi_{KM}(x) \in A^{2n}(X)$
- Trangression (Bismut-Gillet-Soulé): \exists explicit form $\nu(x)$ st

$$\mathrm{dd^c}
u(\sqrt{t}x) = -t \frac{\partial}{\partial t} \varphi(\sqrt{t}x), \qquad t \in \mathbb{R}_{>0}$$

• Define $g(x) := \int_1^\infty \nu(\sqrt{t}x) \frac{dt}{t}$ [assume $x \in V^n$ lin indep]

$$\implies \mathrm{dd^c} g(x) = \int_1^\infty \mathrm{dd^c} \nu(\sqrt{t}x) \frac{dt}{t} = -\int_1^\infty \frac{\partial}{\partial t} \varphi(\sqrt{t}x) dt$$
$$= \varphi(x) - \lim_{t \to \infty} \varphi(\sqrt{t}x)$$
$$= \varphi(x) - \delta_{\mathbb{D}_x} \qquad [Bismut]$$

Define g(T, v) by averaging over $x \in \Omega(T)$, descend to $X = \Gamma \setminus \mathbb{D}$

Arithmetic heights

Assume good int models \mathcal{X} , $\mathcal{Z}(T)$

$$\leadsto \widehat{\mathcal{Z}}(T,v) := (\mathcal{Z}(T), g(T,v)) \in \widehat{\mathit{CH}}^n(\mathcal{X})$$

Kudla's conjecture: $\langle \widehat{\mathcal{Z}}(T,v), \widehat{\omega}^{m-n+1} \rangle \sim C \cdot E_T'(v,s_0)$

Decomposition of arithmetic intersection pairing:

$$\langle \widehat{\mathcal{Z}}(T, \nu), \widehat{\omega}^{m-n+1} \rangle = \int_{X} g(T, \nu) \wedge \Omega^{m-n+1} + ht_{\widehat{\omega}}(\mathcal{Z}(T))$$

 $[\Omega = K\ddot{a}hler form on X]$

Theorem (Garcia-S.)

 \exists explicit constant $\kappa(T)$ such that

$$\int_X g(T, v) \wedge \Omega^{m-n+1} = C \cdot E'_T(v, s_0) + \kappa(T)$$

Non-holomorphic parts (depending on v) in conjecture match

Another application

Take $\mathcal{X} = X$, defined over E.

Let
$$\widehat{Z}(T, v) = (Z(T), g(T, v)) \in \widehat{CH}^n_{\mathbb{C}}(X, D_{cur})$$

[arith Chow group due to Burgos-Kramer-Kühn]

Fix $T_2 \in \operatorname{Sym}_{n-1}(F)$, and consider partial gen series

$$\phi_{T_2}(\tau) = \sum_{T = \begin{pmatrix} * & * \\ * & T_2 \end{pmatrix}} \widehat{Z}(T, v) q^T$$

Theorem (S.)

 $\phi_{T_2}(\tau)$ is a Jacobi form of weight m/2+1, and index T_2 .

Proof uses *-product formula for g(T, v) & induction argument

Rmk: if $F(\tau) = \sum_{T} c(T, v) q^{T}$ is a Siegel mod form, then $F_{T_2}(\tau) = \sum_{T=\begin{pmatrix} * & * \\ * & T_2 \end{pmatrix}} c(T, v) q^{T}$ is a Jacobi mod form, so Thm gives evidence full gen series is modular.

Thank you.