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Kac—Kazhdan conjecture
The affine Kac—Moody algebra g is defined by
g=glt,r '|®CK®CD

Fix a triangular decomposition § = 7 & b @ @, and consider

the Verma modules M(A) with A € b*.
We have an isomorphism of vector spaces

M(\) = U®ER_)1,.
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Hence the character is found by
chM(A) =€ [ (1-e" H e™"9)
a€A’?
Suppose that ) is a generic critical weight, (\,K) = —h".
By the Kac—Kazhdan conjecture (1979),
chi(\)=e* ] 1—e )"
aEA:‘E
The singular vectors are generated by the Sugawara operators
A/I(A)ﬁjL = C[Sl(r)a s 7Sn(r) ’ rz 1];

[Hayashi 1988, Goodman-Wallach 1989, Feigin—Frenkel 1992].
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The operators S, . . ., Sy With r € Z are topological

generators of the center of the completed algebra Uy (9).

The operators are obtained from generators S;,...,S, of a
commutative subalgebra 3(g) of U(r~'g[r~']) by using

a vertex algebra structure.

The subalgebra 3(g) (the Feigin—Frenkel center) gives rise
to higher order Hamiltonians in the Gaudin model.
Applying homomorphisms U(¢~'g[t~']) — U(g) one gets
commutative subalgebras of U(g) thus solving

Vinberg’s quantization problem.
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Symmetrization map

Let g be a finite-dimensional Lie algebra over C.

The linear map
w : S(g) = U(g), X X for xeg,
is a g-module isomorphism known as the symmetrization map.

Equivalently,
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w:S(g)* = Z(g).

Let g be simple with a triangular decompositiong =n_@&h@n,.

Chevalley isomorphism with the Weyl group invariants:

S(e)* = S()",  S()*=C[P1,....P].



Hence we have a vector space isomorphism
w:S(g)* = Z(g).

Let g be simple with a triangular decompositiong =n_@&h@n,.

Chevalley isomorphism with the Weyl group invariants:
S(g)* = SMm)",  S(g)? = C[Py,..., P
Harish-Chandra isomorphism (use the shifted action of W):

X:Z(@) > CH TV, wex=wA+p) —p.
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Type A

The general linear Lie algebra gl has basis elements

E;j, i,j=1,...,N, with the commutation relations
|Ejj, Ex] = 0, Eq — 0 Eig.

Consider the matrix

ENl ... Enn

with entries in the symmetric algebra S(gly).
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Write

det(u+E)=u" + A"+ + Ay

and
det(1 —gqE)™ =1 +Z<I>kq

We have

S(g[N>g[N = (C[Alv' : '7AN] = C[(I)h"'vq)N]'



Write

det(u+E) =™ + Ay + -+ Ay

and
det(1 —gE)~' =1 +Z<I>kq
We have
S(gly)®™ = C[A|,...,Ay] = C[®y,..., Py].
This implies

Z(gly) = Clw(Ay),...,@w(AN)] = Clw(®1),...,@w(Py)].
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Explicitly,

1
W(Am) = — Z Z sSgno - Eig(l)il - .E,‘U(m) im
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and

N
1
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1
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Explicitly,
W(Am) — i' E E SgnJ : Eig'(l)il . 'Eio'(m) im
m.
i],...,i,nzl UEG,—,,

and

N
1
w((I),n) = % Z Z Ei(f(l)il .. .E,’d(m) im*

ilyeeey im=1 0€EG,

Remark. The traces tr E™ withm = 1,...,N are also
algebraically independent generators of S(gly)®'.

Their images w(tr E™) are free generators of Z(gly).
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Given an N-tuple of complex numbers A = (A, ..., \y), the
corresponding irreducible highest weight representation L()\) of

gly is generated by a nonzero vector ¢ € L(\) such that

E;j(=0 for 1<i<j<N, and
Eii£:>\i£ for 1 <i<N.
Any element z € Z(gly) acts in L(\) by multiplying each vector

by a scalar x(z). As a function of the highest weight, x(z) is a

shifted symmetric polynomial in the variables Ay, ..., \y.

It is symmetric in the shifted variables A;, A\, — 1,..., Ay — N+ 1.



Elementary shifted symmetric polynomials:
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Elementary shifted symmetric polynomials:

e ) = > AL = DN, —m ),

i< <im

Complete shifted symmetric polynomials:
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Elementary shifted symmetric polynomials:

e ) = > AL = DN, —m ),

i< <im

Complete shifted symmetric polynomials:

h;,kl(/\h...,)\]v) = Z )\il()\iz—i-])...(/\im—i-m— 1).

1<+ <im

Remark. The shifted Schur polynomials [OO, 1998] are:

S (AL A Z H

sh(T)=p @Ep

11
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m
k
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m

k
of partitions of the set {1, ..., m} into k nonempty subsets.

The Stirling number of the second kind { } counts the number

Theorem. For the Harish-Chandra images we have
" (m) (N\ [N\
s (A PO PR
veaa = ST (E)
and
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Types B, C and D

The orthogonal Lie algebra o), with N =2n or N=2n+1

is the subalgebra of gly spanned by the elements
Fij = Eij — Ej1;r,

where i’ =N —i+ 1.

The symplectic Lie algebra spy with N = 2n is spanned by
F,'j = Eij — & €jE/~/l-/7

where ¢, =—¢,.;, =1 fori=1,...,n.
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Consider the matrix

Fi ... Fin

with entries in S(g) for g = oy or g = spy. Write
det(u+F) = u”" + M”72 + - 4 Ay, for g=sp,,,
and

det(l —gF)~ —1+Z<I>2kq for g=on.
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Given any n-tuple of complex numbers A = (\y,...,\,), the
corresponding irreducible highest weight representation L()\) of
the Lie algebra g is generated by a nonzero vector £ € L()\)

such that

Fijé=0 for 1<i<j<N, and
Fl'if:)\if for 1 <i<n
Any element z € Z(g) acts in L(\) by multiplying each vector by

a scalar x(z). As a function of the highest weight, x(z) is a

shifted invariant polynomial in the variables )\, ..., \,.
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Theorem. (i) For g = sp,, the Harish-Chandra images are

= {0 ()

X eZ(/\l,...,)\,,,O,—/\n,...,—)\1).

(i) For g = 02,41 the Harish-Chandra images are

=0 (G (E)

S 0 TETED Y SRR ')



(ill) For g = 0,, the Harish-Chandra images are

. Hg’;{ }( 2n+1)(—2nk—|—1)_1
“

Re( Ay A1, = Any ooy — A1)

| =

1 *k
+§h’k(>\17"")\n?

Dty



(ill) For g = 0,, the Harish-Chandra images are

. Hg’;{ }( 2n+1)(—2nk—|—1)_1
“

Re( Ay A1, = Any ooy — A1)

| =

1 *
+§hk(>‘l7"'a)‘n>

Remark. If mis odd, then the elements A,,, ®,,

images are zero.

Dty

and their

; —)\1))
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Proving the theorems

Regard the matrix E = [E;] as the element

N
E=e;®E;€EndCN @ U(gly).
ij=1

Consider the algebra

EndC" ®...® EndC" ® U(gIN)

m

andfor a=1,...,m set

Ea:Zm@ ®1®el]®1® .®1 ®Ej;.

ij=1 m—a
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The symmetric group &,, acts on the tensor product space

CVg...oCV
—_———

m

by permutations of tensor factors.

Denote by H™ and A(™ the respective images of the

symmetrizer and anti-symmetrizer
1

o ZO’ and % ngn0~a.

’ UGGm ’ O'eem

We regard H™ and A as elements of the algebra

EndC" @ ... 2 EndC" .

m
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Observe that

@(Ap) = wAME, .. E,

and

@(®,) =t HME,| .. E,.

On the other hand, it is well-known that

X twrAME(Ey—1) .. (En—m~+1) = e (...

and

X trHME (Ey+1) ... (Em+m—1) = (A, ...

7>\N)-

20



Using the identities

k=1
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Using the identities

ST

k=1

we derive

tI'A(m)El . Ey :trA(m)Z {’Z}El(Ez — 1)(Ek—k+ 1)
k=1
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Using the identities

B Y R—

k=1

we derive

tI'A(m)El . Ey :trA(m)Z {’Z}El(Ez — 1)(Ek—k+ 1)
k=1

The result for w(A,,) now follows by calculating the partial

traces over the spaces End C" labelled by k + 1,...,m, as

N—-—m+1
m

tr, A = Alm=1)

21
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Affine Kac—-Moody algebras

> Replace S(g) by the symmetric algebra S(:~'g[r~']).

» Replace S(g)? by the subalgebra S(t_lg[t_l])gm.

We regard t~!g[r~!] = g[t,7!]/g[t] as the adjoint g[f]-module.

Note that T = —d/dt is a derivation of the symmetric algebra.

22
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Notation: X[r] = X" forX e gand r € Z.
An embedding S(g) < S(r~'g[t™"]) is defined by X s X[—1].

The image of any element P € S(g) is denoted by P[—1].

Theorem [Rais—Tauvel 1992, Beilinson—Drinfeld 1997].
If Py, ..., P, are algebraically independent generators of S(g)?,
then the elements 7" P, [—1],...,T"P,[—1] with r > 0 are

algebraically independent generators of S(t*lg[tfl])gm.

23



Define an invariant bilinear form on g by
(X,Y) = — tr(ad Xad Y)
A ’

where 4V is the dual Coxeter number.
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Define an invariant bilinear form on g by

(X,Y) = tr(adXadY),

1
2hV
where 4V is the dual Coxeter number.

The affine Kac—Moody algebra g is the central extension
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Define an invariant bilinear form on g by

1
o tr(adXadY),

(X,Y) =
where h" is the dual Coxeter number.
The affine Kac—Moody algebra g is the central extension
g=glr'eCK
with the commutation relations

(X[r], Y[s]] = [X,Y][r+s] + 76, (X, Y)K.

24
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Consider the vacuum module at the critical level over g,

where the left ideal I is generated by g[7] and K + h".

The Feigin—Frenkel center 3(g) is defined by

3(8) = {ve V(g) | glt]v = 0}.

We have V(g) = U(r 'g[t"']) as vector spaces, and

3(9) is a T-invariant commutative subalgebra of U(r~'g[r~]).

25
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Theorem [Feigin—Frenkel 1992].
There exist elements S,..., S, € U(r'g[r™1]),

where n = rank g, such that
3(@) =C[Trs; | 1=1,...,n, k=>0]

We call Sy,..., S, a complete set of Segal-Sugawara vectors.
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Theorem [Feigin—Frenkel 1992].
There exist elements S,..., S, € U(r'g[r™1]),

where n = rank g, such that

3@ =C[T*s; | 1=1,....n, k>0].

We call Sy,..., S, a complete set of Segal-Sugawara vectors.

Note that the symmetrization map
w:S(t'glr"]) = Ut el ')

is not a g[7]-module homomorphism.

26
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Type A

Theorem. Each family of elements

b= () sy

and

m

z_: (N+m >w(T'"—’<<1>k[—1]) 1,

where m = 1,...,N, is a complete set of Segal-Sugawara

vectors for gly
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Type A

Theorem. Each family of elements

Em:< ) (T FA=1])1

and

m

z_: <N+m - 1> (T By 1)) 1,

where m = 1,...,N, is a complete set of Segal-Sugawara

vectors for gl [Chervov—Talalaev 2006, Chervov—M. 2009].

27
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we can write
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= CHO (T 4 By[1]) (T4 By 1)1,
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Working in the algebra

EndC" ®... @ EndCY @ U(gly)

m

we can write
¢ = A" (T + Ef[1]) ... (T + En[-1]) 1,

Uy =t H" (T + Ef[~1]) ... (T + En[-1]) 1,
where

N

E[-1] =" ¢; ® Ej[—1] € EndC" ® U(gly).

ij=1
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Working in the algebra

EndC" ®... @ EndCY @ U(gly)

m

we can write
¢ = A" (T + Ef[1]) ... (T + En[-1]) 1,

Uy =t H" (T + Ef[~1]) ... (T + En[-1]) 1,
where

N
E[-1] =) ¢; ® Ej[~1] € EndC" @ U(gly).
ij=1

Remark. Another family: tr (7 + E[—1])" 1.

28
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Eliminate T to get

O =t A" (T + Ef[~1]) ... (T + En[-1]) 1

= Z Cy tI'A(m)El [—)\1] e Eg[—)\g],
A-m

where the parts of partitions Aare A\; > --- > Ay > 0 and

c, is the number of permutations of {1,...,m} of cycle type A,

m!
Cy =
AT Mk mbkn g,

A= (1k2k | k),

29
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Theorem. We have the Segal-Sugawara vectors

—1
=3 (}) ara®Bl-A] El-A

AFm

and

-1
vo = (N”_ 1> exttHOE [=\] ... Ef[— ).
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Theorem. We have the Segal-Sugawara vectors

—1
Gn= (ZZ> ey trAQE =] . Eg[- )]

AFm

and

-1
U= <N+€_ 1> exttHOE [=\] ... Ef[— ).

For proofs and relations between the families, including
MacMahon Master Theorem and Newton Identity, see
[Sugawara operators for classical Lie algebras, AMS, 2018],

Russian edition is available on the MCCME web site.
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Types B, C and D

Theorem. (i) The family
k
¢2k:;( 2 — 9] )W(T Az[[—l})l
with k = 1,...,n, is a complete set of Segal-Sugawara vectors

for g = sp,,.
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Types B, C and D

Theorem. (i) The family
L f2m—20+1
= " T2 Ay [-1)) 1
¢2k ;( 2k — 21 )w( 21[ D
with k = 1,...,n, is a complete set of Segal-Sugawara vectors

for g = sp,,. (i) The family

k
by =Y (N P 2>W(T2k21<1>21[—1]) |

with k = 1,...,n, is a complete set of Segal-Sugawara vectors

for g = oy with N = 2n + 1.
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(iil) The family v,, with k = 1,...,n — 1 together with

1
PEF[-1] = o) > sgno - Foyoyl—1] - Fo@uotyoay|—1]

211
ge€Gy,
is a complete set of Segal-Sugawara vectors

for g = oy with N = 2n.
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(iil) The family v,, with k = 1,...,n — 1 together with

1
PEF[-1] = 5 > sgno - Foyoyl—1] - Fo@uotyoay|—1]

2 €6y,
is a complete set of Segal-Sugawara vectors
for g = oy with N = 2n.
[Yakimova 2019, M. 2013, 2020].
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(iil) The family v,, with k = 1,...,n — 1 together with

1
PEF[-1] = 5 > sgno - Foyoyl—1] - Fo@uotyoay|—1]

2 €6y,
is a complete set of Segal-Sugawara vectors
for g = oy with N = 2n.
[Yakimova 2019, M. 2013, 2020].

Remark. These results imply the Feigin—Frenkel theorem for
the classical types. Formulas for type G, are also known

by [M.—Ragoucy—Rozhkovskaya 2016, Yakimova 2019].
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Theorem. We have the Segal-Sugawara vectors for even m

. 2n+1\ "
¢m:Z < ’ > c/\trA(Z)Fﬂ—)\l]'-.FZ[_)‘Z]
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Theorem. We have the Segal-Sugawara vectors for even m

o 2n+1\ "
¢m = Z < , > C) tI‘A(Z)Fl[—)\l] ...

. N+e—2\""
Q/Jm = Z ( , > C) tI‘H(Z)Fl[—)\l] ..

Fo[=Ad]

Fo[=Ad]
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Affine Harish-Chandra isomorphism
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Affine Harish-Chandra isomorphism

The Feigin—Frenkel theorem (1992) provides an isomorphism

P38 = W(te),
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Affine Harish-Chandra isomorphism
The Feigin—Frenkel theorem (1992) provides an isomorphism
f:3(@) = W),

where the classical W-algebra W(tg) is associated with

the Langlands dual Lie algebra g.
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Affine Harish-Chandra isomorphism

The Feigin—Frenkel theorem (1992) provides an isomorphism
f:3(@) = W),

where the classical W-algebra W(tg) is associated with
the Langlands dual Lie algebra “g. It is obtained by restriction

of the affine Harish-Chandra homomorphism

fi: U(Flg[t*l])h — Uyl ),
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Affine Harish-Chandra isomorphism

The Feigin—Frenkel theorem (1992) provides an isomorphism
f:3(@) = W),

where the classical W-algebra W(tg) is associated with
the Langlands dual Lie algebra “g. It is obtained by restriction

of the affine Harish-Chandra homomorphism
Fru(e'el )" — Ul ),

the projection modulo the left ideal generated by +~'n_[r~1].

34



Let M1y

» Hn

be a basis of the Cartan subalgebra § of g.
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Let u,...,u, be abasis of the Cartan subalgebra § of g.

Set p;[r] = pit" and identify

U(t_]f)[t_l]) =Clulrl,...,palr] | r < 0] =: Py
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Let u,...,u, be abasis of the Cartan subalgebra § of g.

Set p;[r] = pit" and identify
U ') = Clualr], - palr] | r < 0] =: P
The classical W-algebra W(g) is defined by

W(g)={PeP,|ViP=0, i=1,...,n},
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Let u,...,u, be abasis of the Cartan subalgebra § of g.

Set p;[r] = pit" and identify
U ') = C [l ... palr] | r < 0] = P
The classical W-algebra W(g) is defined by
W) ={PeP,|ViP=0, i=1,...,n},

the V; are the screening operators.

35



Introduce the noncommutative elementary symmetric functions

em(xt,...,xy) = Z Xiy o X,
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Introduce the noncommutative elementary symmetric functions

em(xt,...,xy) = Z Xiy o X,

36



Type A
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Type A

Theorem.
The Harish-Chandra images of

the Segal-Sugawara vectors ¢,,, 1, € 3(§[N) are given by
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Type A

Theorem.
The Harish-Chandra images of

the Segal-Sugawara vectors ¢,,, 1, € 3(§[N) are given by

f:¢m'_>em(T+Ml[_l]w"’T'i_NN[_l])1
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Type A

Theorem.
The Harish-Chandra images of

the Segal-Sugawara vectors ¢,,, 1, € 3(§[N) are given by

f:¢m'_>em(T+Ml[_l]w"’T'i_NN[_l])1

and

f i = o (T + pa[—1], ..., T+ py[—1]) 1.

37



Type A

Theorem.
The Harish-Chandra images of

the Segal-Sugawara vectors ¢,,, 1, € 3(§[N) are given by

fidp—em(T+m[-1],.... T+ py[-1])1
and
f i = (T + i [—1], ..., T+ py[—1]) 1.

[Chervov—M. 2009].
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Types B, C and D
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Types B, C and D

Theorem. (i) If g = sp,, then the image of ¢,, under § is

eoe(T+ g [~1], .o T+ pug[-1), T, T — [~ 1], .., T — i [—1]) 1.
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Types B, C and D

Theorem. (i) If g = sp,, then the image of ¢,, under § is

eoe(T+ g [~1], .o T+ pug[-1), T, T — [~ 1], .., T — i [—1]) 1.

(i) If g = 02,41 then the image of v, under f is

B (T + g [= 1], o, T+ [ 1], T = [~ 1], ..o, T — g [-1]) 1.
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(i) If g = 0y, then the image of ¢, under f is
1
5 h2k(T + 1 [_1]7 ey T+ Hn—1 [_1]7 T— ,un[_l]v

1
+ §h2k(T+,U1[_1]a .- -7T+ﬂn[_1]vT_ ,Un—l[_l]

o T = m[=1]) 1

oo, T = [—1]) 1.
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(i) If g = 02, then the image of 1, under § is
1
5hzk(Ter[—l], v T4 ppa [, T — pu[—1], ... T — [ 1)) 1

1
by (T (=1 T =1L T = s [=1] o, T = 1) 1

Moreover,

fPEF[—1] = (-1 =T)... (ua[-1] = T) 1.
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(iii) If g = 0o, then the image of v, under § is

1
Ehzk(Ter[—l],...,TJru,l_l[—l],T—Mn[—l],...,T— pi[—1]) 1

1
by (T (=1 T =1L T = s [=1] o, T = 1) 1

Moreover,

fPEF[—1] = (-1 =T)... (ua[-1] = T) 1.

[M.—Mukhin 2014, Rozhkovskaya 2014].
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Screening operators
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Screening operators

For W(gly) the operators Vi, ..

., Vn_ are
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Screening operators

For W(gly) the operators Vi, ...,

Vy_1 are

0

V= iv <3uz

=

~1] " St~ 1]

)

40



Screening operators

For W(gly) the operators V;,...,Vy_; are

= )
Vi=2 Vi (em my 1 o )

=

with

ZVtrZ — exp Z il — Mz+1[ ]Zm'

40



For W(oy) and W(sp,,,) the operators Vi, ...

are given by the above formulas, while

aanl

M



For W(oy) and W(sp,,,) the operators Vi, ...

are given by the above formulas, while

N e

] r—l]

aanl

M



For W(oy) and W(sp,,,) the operators Vi, ..., V,_;

are given by the above formulas, while

ZV " Ot r—l]

=l

with

- o fnl—m)]
Do Vard =exp 3o F
r=0 m=1
for type B,, and by similar formulas in types C, and D,,.
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