Motivation 000 Definition and properties 0000

Affine case

Results beyond affine type 0000000

Further 0000 00

# A correction factor for Kac-Moody groups and *t*-deformed root multiplicities

Anna Puskás

University of Queensland

New Connections in Integrable Systems 1 October 2020



University of Queensland

Motivation 000 Definition and properties 0000

Affine case 00 Results beyond affine type 0000000

Further 0000 00

## Joint work with Dinakar Muthiah and Ian Whitehead; arXiv: 1806.05209, Mathematische Zeitschrift 296, pages 127–145 (2020)

- 1 Preview and Background
- 2 Motivation
- 3 Definition and properties
- 4 Affine case
- 5 Results beyond affine type
- 6 Further

・ロト・西ト・山田・山田・山口・

University of Queensland

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further    |
|------------------------|------------|---------------------------|-------------|----------------------------|------------|
| ●000000                | 000        | 0000                      | 00          | 0000000                    | 0000<br>00 |

Macdonald's identity (1972, *The Poincaré series of a Coxeter group*):

$$\sum_{w \in W} w \left( \prod_{\alpha \in \Phi^+} \frac{1 - te^{\alpha}}{1 - e^{\alpha}} \right) = \sum_{w \in W} t^{\ell(w)}$$

W Weyl group,  $\ell:W o \mathbb{Z}_{\geq 0}$  length function,  $\Phi^+$  positive roots. Kac-Moody root systems:

$$\begin{split} \mathfrak{m} \cdot \sum_{w \in W} w \left( \prod_{\alpha \in \Phi_{t_{\alpha}}^{+}} \frac{1 - te^{\alpha}}{1 - e^{\alpha}} \right) &= \sum_{w \in W} t^{\ell(w)} \\ \mathfrak{m}' \cdot \sum_{w \in W} w \left( \prod_{\alpha \in \Phi^{+}} \left( \frac{1 - te^{\alpha}}{1 - e^{\alpha}} \right)^{\operatorname{mult}(\alpha)} \right) &= \sum_{w \in W} t^{\ell(w)} \end{split}$$

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | F |
|------------------------|------------|---------------------------|-------------|----------------------------|---|
| •000000                | 000        | 0000                      | 00          | 000000                     | 0 |

### Macdonald's identity (1972, The Poincaré series of a Coxeter group)

$$\sum_{w \in W} w \left( \prod_{\alpha \in \Phi^+} \frac{1 - te^{\alpha}}{1 - e^{\alpha}} \right) = \sum_{w \in W} t^{\ell(w)}$$

W Weyl group,  $\ell: W \to \mathbb{Z}_{\geq 0}$  length function,  $\Phi^+$  positive roots.

Kac-Moody root systems:

$$\begin{split} \mathfrak{m} \cdot \sum_{w \in W} w \left( \prod_{\alpha \in \Phi_{re}^+} \frac{1 - te^{\alpha}}{1 - e^{\alpha}} \right) &= \sum_{w \in W} t^{\ell(w)} \\ \mathfrak{m}' \cdot \sum_{w \in W} w \left( \prod_{\alpha \in \Phi^+} \left( \frac{1 - te^{\alpha}}{1 - e^{\alpha}} \right)^{\mathsf{mult}(\alpha)} \right) &= \sum_{w \in W} t^{\ell(w)} \end{split}$$

| Preview and | Background |
|-------------|------------|
| •000000     |            |

Definition and properties 0000

Affine case 00 Results beyond affine type 0000000

Further 0000 00

Macdonald's identity (1972, The Poincaré series of a Coxeter group):

$$\sum_{w \in W} w \left( \prod_{\alpha \in \Phi^+} \frac{1 - t e^{\alpha}}{1 - e^{\alpha}} \right) = \sum_{w \in W} t^{\ell(w)}$$

W Weyl group,  $\ell: W \to \mathbb{Z}_{\geq 0}$  length function,  $\Phi^+$  positive roots. Kac-Moody root systems:

$$\begin{split} \mathfrak{m} \cdot \sum_{w \in W} w \left( \prod_{\alpha \in \Phi_{re}^+} \frac{1 - te^{\alpha}}{1 - e^{\alpha}} \right) &= \sum_{w \in W} t^{\ell(w)} \\ \mathfrak{m}' \cdot \sum_{w \in W} w \left( \prod_{\alpha \in \Phi^+} \left( \frac{1 - te^{\alpha}}{1 - e^{\alpha}} \right)^{\operatorname{mult}(\alpha)} \right) &= \sum_{w \in W} t^{\ell(w)} \end{split}$$

・ロト・(部ト・モド・モー・)への

University of Queensland

| Preview and | Background |
|-------------|------------|
| •000000     |            |

Definition and properties 0000

Affine case 00 Results beyond affine type 0000000

Further 0000 00

Macdonald's identity (1972, The Poincaré series of a Coxeter group):

$$\sum_{w \in W} w \left( \prod_{\alpha \in \Phi^+} \frac{1 - t e^{\alpha}}{1 - e^{\alpha}} \right) = \sum_{w \in W} t^{\ell(w)}$$

W Weyl group,  $\ell:W\to\mathbb{Z}_{\geq 0}$  length function,  $\Phi^+$  positive roots.

Kac-Moody root systems:

$$\mathfrak{m} \cdot \sum_{w \in W} w \left( \prod_{\alpha \in \Phi_{re}^+} \frac{1 - te^{\alpha}}{1 - e^{\alpha}} \right) = \sum_{w \in W} t^{\ell(w)}$$
$$\mathfrak{m}' \cdot \sum_{w \in W} w \left( \prod_{\alpha \in \Phi^+} \left( \frac{1 - te^{\alpha}}{1 - e^{\alpha}} \right)^{\operatorname{mult}(\alpha)} \right) = \sum_{w \in W} t^{\ell(w)}$$

・ロット語・ (曲・ (日・)

Anna Puskás

| Preview and | Background |
|-------------|------------|
| •000000     |            |

Definition and properties 0000

Affine case 00 Results beyond affine type 0000000

Further 0000 00

Macdonald's identity (1972, The Poincaré series of a Coxeter group):

$$\sum_{w \in W} w \left( \prod_{\alpha \in \Phi^+} \frac{1 - t e^{\alpha}}{1 - e^{\alpha}} \right) = \sum_{w \in W} t^{\ell(w)}$$

W Weyl group,  $\ell: W \to \mathbb{Z}_{\geq 0}$  length function,  $\Phi^+$  positive roots.

Kac-Moody root systems:

$$\mathfrak{m} \cdot \sum_{w \in W} w \left( \prod_{\alpha \in \Phi_{re}^+} \frac{1 - te^{\alpha}}{1 - e^{\alpha}} \right) = \sum_{w \in W} t^{\ell(w)}$$
$$\mathfrak{m}' \cdot \sum_{w \in W} w \left( \prod_{\alpha \in \Phi^+} \left( \frac{1 - te^{\alpha}}{1 - e^{\alpha}} \right)^{\operatorname{mult}(\alpha)} \right) = \sum_{w \in W} t^{\ell(w)}$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへぐ

| Preview | and | Background |
|---------|-----|------------|
| 0000    | 000 |            |

Definition and properties 0000

Affine case 00 Results beyond affine type 0000000

Further 0000 00

Macdonald's identity (1972, The Poincaré series of a Coxeter group):

$$\sum_{w \in W} w \left( \prod_{\alpha \in \Phi^+} \frac{1 - te^{\alpha}}{1 - e^{\alpha}} \right) = \sum_{w \in W} t^{\ell(w)}$$

W Weyl group,  $\ell: W \to \mathbb{Z}_{\geq 0}$  length function,  $\Phi^+$  positive roots.

Kac-Moody root systems:

$$\begin{split} \mathfrak{m} \cdot \sum_{w \in W} w \left( \prod_{\alpha \in \Phi_{re}^+} \frac{1 - te^{\alpha}}{1 - e^{\alpha}} \right) &= \sum_{w \in W} t^{\ell(w)} \\ \mathfrak{m}' \cdot \sum_{w \in W} w \left( \prod_{\alpha \in \Phi^+} \left( \frac{1 - te^{\alpha}}{1 - e^{\alpha}} \right)^{\mathsf{mult}(\alpha)} \right) &= \sum_{w \in W} t^{\ell(w)} \end{split}$$

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

University of Queensland

Motivation 000 Definition and properties 0000

Affine case

Results beyond affine type 0000000

Further 0000 00

Example:  $A_1$  ( $\mathfrak{sl}_2$ )



Dynkin diagram: o, Cartan matrix: (2)



Macdonald's identity  $\left( \, e^{lpha_1} \mapsto rac{x_1}{x_2} \, 
ight)$ 

$$\frac{x_2 - t \cdot x_1}{x_2 - x_1} + \frac{x_1 - t \cdot x_2}{x_1 - x_2} = 1 + t$$

・ロト・日本・日本・日本・日本・日本

Anna Puskás

Motivation 000 Definition and properties 0000

Affine case

Results beyond affine type 0000000

Further 0000 00

Example:  $A_1$  ( $\mathfrak{sl}_2$ )

$$\sum_{w \in W} w \left( \prod_{\alpha \in \Phi^+} \frac{1 - t e^{\alpha}}{1 - e^{\alpha}} \right) = \sum_{w \in W} t^{\ell(w)}$$

Dynkin diagram: •, Cartan matrix: (2)



Macdonald's identity (

$$\frac{x_2 - t \cdot x_1}{x_2 - x_1} + \frac{x_1 - t \cdot x_2}{x_1 - x_2} = 1 + t$$

・ロット 中マット 中国 うくの

Motivation 000 Definition and properties 0000

Affine case

Results beyond affine type 0000000

Further 0000 00

Example:  $A_1$  ( $\mathfrak{sl}_2$ )

$$\sum_{w \in W} w \left( \prod_{\alpha \in \Phi^+} \frac{1 - t e^{\alpha}}{1 - e^{\alpha}} \right) = \sum_{w \in W} t^{\ell(w)}$$

Dynkin diagram: o,

Cartan matrix: (2)



Macdonald's identity  $\left(e^{lpha_1}\mapsto rac{x_1}{x_2}
ight)$  :

$$\frac{x_2 - t \cdot x_1}{x_2 - x_1} + \frac{x_1 - t \cdot x_2}{x_1 - x_2} = 1 + t$$

・ロト・日本・日本・日本・ 日本・ シック

Anna Puskás

Motivation 000 Definition and properties 0000

Affine case

Results beyond affine type 0000000

Further 0000 00

Example:  $A_1$  ( $\mathfrak{sl}_2$ )

$$\sum_{w \in W} w \left( \prod_{\alpha \in \Phi^+} \frac{1 - t e^{\alpha}}{1 - e^{\alpha}} \right) = \sum_{w \in W} t^{\ell(w)}$$

Dynkin diagram: o,

Cartan matrix: (2)



Macdonald's identity  $\left(e^{\alpha_1}\mapsto \frac{x_1}{x_2}\right)$ 

$$\frac{x_2 - t \cdot x_1}{x_2 - x_1} + \frac{x_1 - t \cdot x_2}{x_1 - x_2} = 1 + t$$

・ロト・日本・日本・日本・ 日本・ シック

Motivation 000 Definition and properties 0000

Affine case 00 Results beyond affine type 0000000

Further 0000 00

Example:  $A_1$  ( $\mathfrak{sl}_2$ )

$$\sum_{w \in W} w \left( \prod_{\alpha \in \Phi^+} \frac{1 - t e^{\alpha}}{1 - e^{\alpha}} \right) = \sum_{w \in W} t^{\ell(w)}$$

Dynkin diagram: o,

Cartan matrix: (2)



Macdonald's identity 
$$\left(e^{lpha_1}\mapsto rac{x_1}{x_2}
ight)$$
 :

$$\frac{x_2 - t \cdot x_1}{x_2 - x_1} + \frac{x_1 - t \cdot x_2}{x_1 - x_2} = 1 + t$$

Motivation 000 Definition and properties

Affine case

Results beyond affine type 0000000

Further 0000 00

Example:  $A_2$  ( $\mathfrak{sl}_3$ )



University of Queensland

Motivation 000 Definition and properties

Affine case

Results beyond affine type 0000000

Further 0000 00

Example:  $A_2$  ( $\mathfrak{sl}_3$ )



Anna Puskás

Motivation 000 Definition and properties 0000 Affine case

Results beyond affine type 0000000

Further 0000 00

Example:  $A_2$  ( $\mathfrak{sl}_3$ )

 $\sum_{w \in W} w \left( \prod_{\alpha \in \Phi^+} \frac{1 - t e^{\alpha}}{1 - e^{\alpha}} \right) = \sum_{w \in W} t^{\ell(w)}$ Dynkin diagram: • Cartan matrix:  $\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$  $\sum_{x_1} \left( \frac{x_2 - t \cdot x_1}{x_2 - x_1} \cdot \frac{x_3 - t \cdot x_2}{x_3 - x_2} \cdot \frac{x_3 - t \cdot x_1}{x_3 - x_1} \right) = 1 + 2t + 2t^2 + t^3$ 

Anna Puskás

University of Queensland

nan

Motivation 000 Definition and properties 0000 Affine case

Results beyond affine type 0000000

Further 0000 00

Example:  $A_2$  ( $\mathfrak{sl}_3$ )

 $\sum_{w \in W} w \left( \prod_{\alpha \in \Phi^+} \frac{1 - t e^{\alpha}}{1 - e^{\alpha}} \right) = \sum_{w \in W} t^{\ell(w)}$ Dynkin diagram: •—••, Cartan matrix:  $\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$  $\rightarrow 0$  $\sum_{x_1} \left( \frac{x_2 - t \cdot x_1}{x_2 - x_1} \cdot \frac{x_3 - t \cdot x_2}{x_3 - x_2} \cdot \frac{x_3 - t \cdot x_1}{x_3 - x_1} \right) = 1 + 2t + 2t^2 + t^3$ 

University of Queensland

Motivation 000 Definition and properties 0000 Affine case

Results beyond affine type 0000000

Further 0000 00

Example:  $A_2$  ( $\mathfrak{sl}_3$ )

 $\sum_{w \in W} w \left( \prod_{\alpha \in \Phi^+} \frac{1 - t e^{\alpha}}{1 - e^{\alpha}} \right) = \sum_{w \in W} t^{\ell(w)}$ Dynkin diagram: •—••, Cartan matrix:  $\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$  $\rightarrow 0$ Macdonald's identity  $\left(e^{\alpha_1} \mapsto \frac{x_1}{x_2}\right)$ :  $\sum_{x_1} \left( \frac{x_2 - t \cdot x_1}{x_2 - x_1} \cdot \frac{x_3 - t \cdot x_2}{x_3 - x_2} \cdot \frac{x_3 - t \cdot x_1}{x_3 - x_1} \right) = 1 + 2t + 2t^2 + t^3$ 

Anna Puskás

| Preview and | Background |
|-------------|------------|
| 0000000     |            |

Definition and properties

Affine case

Results beyond affine type 0000000

Further 0000 00

Affine type



| Preview and | Background |
|-------------|------------|
| 0000000     |            |

Definition and properties

Affine case

Results beyond affine type 0000000

Further 0000 00

Affine type



| Preview and | Background |
|-------------|------------|
| 0000000     |            |

Definition and properties

Affine case 00 Results beyond affine type 0000000

Further 0000 00

Affine type



| Preview and | Background |
|-------------|------------|
| 0000000     |            |

Definition and properties

Affine case 00 Results beyond affine type 0000000

Further 0000 00

## Affine type



| Preview and | Background |
|-------------|------------|
| 0000000     |            |

Definition and properties

Affine case 00 Results beyond affine type 0000000

Further 0000 00

Affine type



Motivation 000 Definition and properties 0000

Affine case

Results beyond affine type 0000000

Further 0000 00





University of Queensland

Sac

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|------------------------|------------|---------------------------|-------------|----------------------------|---------|
| 0000000                | 000        | 0000                      | 00          | 0000000                    | 0000    |

$$\mathfrak{m} = \prod_{\lambda \in Q^+_{\mathrm{im}}} \prod_{n \ge 0} (1 - t^n e^{\lambda})^{-m(\lambda,n)}$$

where  $Q_{im}^+$  positive imaginary root cone; and

$$m_{\lambda}(t) = \sum_{n \ge 0} m(\lambda, n) t^n$$

are polynomials with constant term:  $m_{\lambda}(0) = \text{mult}(\lambda)$  :

$$\mathfrak{m}|_{t=0} = \prod_{\alpha \in \Phi^+_{\mathrm{im}}} (1 - e^{\alpha})^{-\operatorname{\mathsf{mult}}(\alpha)}$$

University of Queensland

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|------------------------|------------|---------------------------|-------------|----------------------------|---------|
| 0000000                | 000        | 0000                      | 00          | 0000000                    | 0000    |

$$\mathfrak{m} = \prod_{\lambda \in \mathcal{Q}^+_{\mathrm{im}}} \prod_{n \geq 0} (1 - t^n e^{\lambda})^{-m(\lambda,n)}$$

where  $Q_{im}^+$  positive imaginary root cone; and

$$m_{\lambda}(t) = \sum_{n \ge 0} m(\lambda, n) t^n$$

are polynomials with constant term:  $m_{\lambda}(0) = \text{mult}(\lambda)$ :

$$\mathfrak{m}|_{t=0} = \prod_{\alpha \in \Phi^+_{\mathrm{im}}} (1 - e^{\alpha})^{-\operatorname{mult}(\alpha)}$$

<ロト < 部 > < 主 > < 主 > 主 のへへ University of Queensland

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|------------------------|------------|---------------------------|-------------|----------------------------|---------|
| 0000000                | 000        | 0000                      | 00          | 0000000                    | 0000    |

$$\mathfrak{m} = \prod_{\lambda \in \mathcal{Q}^+_{\mathrm{im}}} \prod_{n \geq 0} (1 - t^n e^{\lambda})^{-m(\lambda,n)}$$

where  $Q_{\rm im}^+$  positive imaginary root cone; and

$$m_{\lambda}(t) = \sum_{n \geq 0} m(\lambda, n) t^n$$

are polynomials with constant term:  $m_{\lambda}(0) = \text{mult}(\lambda)$ :

$$\mathfrak{m}|_{t=0} = \prod_{\alpha \in \Phi^+_{\mathrm{im}}} (1 - e^{\alpha})^{-\operatorname{\mathsf{mult}}(\alpha)}$$

University of Queensland

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|------------------------|------------|---------------------------|-------------|----------------------------|---------|
| 0000000                | 000        | 0000                      | 00          | 0000000                    | 0000    |

$$\mathfrak{m} = \prod_{\lambda \in \mathcal{Q}^+_{\mathrm{im}}} \prod_{n \geq 0} (1 - t^n e^{\lambda})^{-m(\lambda,n)}$$

where  $Q_{im}^+$  positive imaginary root cone; and

 $m_{\lambda}(t) = \sum_{n \ge 0} m(\lambda, n) t^n$ 

are polynomials with constant term:  $m_{\lambda}(0) = \text{mult}(\lambda)$ :

$$\mathfrak{m}|_{t=0} = \prod_{\alpha \in \Phi^+_{\mathrm{im}}} (1 - e^{\alpha})^{-\operatorname{\mathsf{mult}}(\alpha)}$$

University of Queensland

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|------------------------|------------|---------------------------|-------------|----------------------------|---------|
| 0000000                | 000        | 0000                      | 00          | 0000000                    | 0000    |

$$\mathfrak{m} = \prod_{\lambda \in \mathcal{Q}^+_{\mathrm{im}}} \prod_{n \geq 0} (1 - t^n e^{\lambda})^{-m(\lambda,n)}$$

where  $Q_{im}^+$  positive imaginary root cone; and

 $m_{\lambda}(t) = \sum_{n \ge 0} m(\lambda, n) t^n$ 

are polynomials with constant term:  $m_{\lambda}(0) = \text{mult}(\lambda)$ :

$$\mathfrak{m}|_{t=0} = \prod_{lpha \in \Phi^+_{\mathrm{im}}} (1 - e^{lpha})^{-\operatorname{\mathsf{mult}}(lpha)}$$

University of Queensland

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|------------------------|------------|---------------------------|-------------|----------------------------|---------|
| 0000000                | 000        | 0000                      | 00          | 0000000                    | 0000    |

$$\mathfrak{m} = \prod_{\lambda \in \mathcal{Q}^+_{\mathrm{im}}} \prod_{n \geq 0} (1 - t^n e^{\lambda})^{-m(\lambda,n)}$$

where  $Q_{im}^+$  positive imaginary root cone; and

$$m_{\lambda}(t) = \sum_{n \ge 0} m(\lambda, n) t^n$$

are polynomials with constant term:  $m_{\lambda}(0) = \text{mult}(\lambda)$ :

$$\mathfrak{m}|_{t=0} = \prod_{lpha \in \Phi^+_{ ext{im}}} (1-e^lpha)^{-\operatorname{\mathsf{mult}}(lpha)}$$

University of Queensland

・ロマ・御マ・前マ・日マ ひゃう

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further    |
|------------------------|------------|---------------------------|-------------|----------------------------|------------|
| 000000                 | 000        | 0000                      | 00          | 000000                     | 0000<br>00 |

$$\Delta_{\mathrm{re}} = \prod_{\alpha \in \Phi_{\mathrm{re}}^+} (1 - e^{\alpha}), \ \Delta_{t,\mathrm{re}} = \prod_{\alpha \in \Phi_{\mathrm{re}}^+} (1 - te^{\alpha}), \ P(t) = \sum_{w \in W} t^{\ell(w)}$$

$$\mathfrak{m} \cdot \sum_{w \in W} w\left(\frac{\Delta_{t, \mathrm{re}}}{\Delta_{\mathrm{re}}}\right) = P(t)$$

$$\begin{split} \mathfrak{m}|_{t=0} \cdot rac{1}{\Delta_{\mathrm{re}}} \cdot \sum_{w \in W} (-1)^{\ell(w)} \cdot \prod_{lpha \in \Phi(w^{-1})} e^{lpha} = 1 \\ \mathfrak{m}|_{t=0} = \prod_{lpha \in \Phi_{\mathrm{im}}^+} (1 - e^{lpha})^{-\operatorname{mult}(lpha)} \end{split}$$

Remark: sometimes consider  $lpha\mapsto -lpha$  (and omit ees).

Anna Puskás

| Motivation | Definition and properties | Affine case                          | Results beyond affine type                                                                            | Furthe                                                                                                                                                    |
|------------|---------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 000        | 0000                      | 00                                   | 0000000                                                                                               | 0000                                                                                                                                                      |
|            | Motivation<br>000         | Motivation Definition and properties | Motivation         Definition and properties         Affine case           OOO         OOO         OO | Motivation         Definition and properties         Affine case         Results beyond affine type           000         0000         00         0000000 |

$$\Delta_{\mathrm{re}} = \prod_{\alpha \in \Phi_{\mathrm{re}}^+} (1 - e^{\alpha}), \ \Delta_{t,\mathrm{re}} = \prod_{\alpha \in \Phi_{\mathrm{re}}^+} (1 - t e^{\alpha}), \ P(t) = \sum_{w \in W} t^{\ell(w)}$$

$$\mathfrak{m} \cdot \sum_{w \in W} w\left(\frac{\Delta_{t, \mathrm{re}}}{\Delta_{\mathrm{re}}}\right) = P(t)$$

$$\mathfrak{m}|_{t=0} \cdot rac{1}{\Delta_{\mathrm{re}}} \cdot \sum_{w \in W} (-1)^{\ell(w)} \cdot \prod_{lpha \in \Phi(w^{-1})} e^{lpha} = 1$$
  
 $\mathfrak{m}|_{t=0} = \prod_{lpha \in \Phi_{\mathrm{im}}^+} (1 - e^{lpha})^{-\operatorname{\mathsf{mult}}(lpha)}$ 

Anna Puskás

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Furth |
|------------------------|------------|---------------------------|-------------|----------------------------|-------|
| 000000                 | 000        | 0000                      | 00          | 000000                     | 000   |

$$\Delta_{\mathrm{re}} = \prod_{\alpha \in \Phi_{\mathrm{re}}^+} (1 - e^{\alpha}), \ \Delta_{t,\mathrm{re}} = \prod_{\alpha \in \Phi_{\mathrm{re}}^+} (1 - t e^{\alpha}), \ P(t) = \sum_{w \in W} t^{\ell(w)}$$

$$\mathfrak{m} \cdot \sum_{w \in W} w\left(\frac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}}\right) = P(t)$$

$$\mathfrak{m}|_{t=0} \cdot rac{1}{\Delta_{\mathrm{re}}} \cdot \sum_{w \in W} (-1)^{\ell(w)} \cdot \prod_{lpha \in \Phi(w^{-1})} e^{lpha} = 1$$
  
 $\mathfrak{m}|_{t=0} = \prod_{lpha \in \Phi_{\mathrm{Im}}^+} (1 - e^{lpha})^{-\operatorname{\mathsf{mult}}(lpha)}$ 

Remark: sometimes consider  $lpha\mapsto -lpha$  (and omit ees).

<ロト < 部 > < 主 > < 主 > 主 のへへ University of Queensland

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Furth |
|------------------------|------------|---------------------------|-------------|----------------------------|-------|
| 000000                 | 000        | 0000                      | 00          | 000000                     | 000   |

$$\Delta_{\mathrm{re}} = \prod_{\alpha \in \Phi_{\mathrm{re}}^+} (1 - e^{\alpha}), \ \Delta_{t,\mathrm{re}} = \prod_{\alpha \in \Phi_{\mathrm{re}}^+} (1 - t e^{\alpha}), \ P(t) = \sum_{w \in W} t^{\ell(w)}$$

$$\mathfrak{m} \cdot \sum_{w \in W} w\left(rac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}}
ight) = P(t)$$

$$\mathfrak{m}|_{t=0} \cdot rac{1}{\Delta_{ ext{re}}} \cdot \sum_{w \in W} (-1)^{\ell(w)} \cdot \prod_{lpha \in \Phi(w^{-1})} e^{lpha} = 1$$
 $\mathfrak{m}|_{t=0} = \prod_{lpha \in \Phi^+_{ ext{im}}} (1 - e^{lpha})^{-\operatorname{mult}(lpha)}$ 

Remark: sometimes consider  $lpha\mapsto -lpha$  (and omit ees).

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Furtl |
|------------------------|------------|---------------------------|-------------|----------------------------|-------|
| 000000                 | 000        | 0000                      | 00          | 0000000                    | 000   |

$$\Delta_{\mathrm{re}} = \prod_{\alpha \in \Phi_{\mathrm{re}}^+} (1 - e^{\alpha}), \ \Delta_{t,\mathrm{re}} = \prod_{\alpha \in \Phi_{\mathrm{re}}^+} (1 - t e^{\alpha}), \ P(t) = \sum_{w \in W} t^{\ell(w)}$$

$$\mathfrak{m} \cdot \sum_{w \in W} w\left(\frac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}}\right) = P(t)$$

$$\mathfrak{m}|_{t=0} \cdot rac{1}{\Delta_{\mathrm{re}}} \cdot \sum_{w \in W} (-1)^{\ell(w)} \cdot \prod_{lpha \in \Phi(w^{-1})} e^{lpha} = 1$$
 $\mathfrak{m}|_{t=0} = \prod_{lpha \in \Phi_{\mathrm{im}}^+} (1 - e^{lpha})^{-\operatorname{\mathsf{mult}}(lpha)}$ 

Remark: sometimes consider  $lpha\mapsto -lpha$  (and omit ees).

<ロト < 部ト < 注ト < 注ト こま の Q () University of Queensland

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Furtl |
|------------------------|------------|---------------------------|-------------|----------------------------|-------|
| 000000                 | 000        | 0000                      | 00          | 0000000                    | 000   |

$$\Delta_{\mathrm{re}} = \prod_{\alpha \in \Phi_{\mathrm{re}}^+} (1 - e^{\alpha}), \ \Delta_{t,\mathrm{re}} = \prod_{\alpha \in \Phi_{\mathrm{re}}^+} (1 - t e^{\alpha}), \ P(t) = \sum_{w \in W} t^{\ell(w)}$$

$$\mathfrak{m} \cdot \sum_{w \in W} w\left(\frac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}}\right) = P(t)$$

$$\mathfrak{m}|_{t=0} \cdot rac{1}{\Delta_{\mathrm{re}}} \cdot \sum_{w \in W} (-1)^{\ell(w)} \cdot \prod_{lpha \in \Phi(w^{-1})} e^{lpha} = 1$$
  
 $\mathfrak{m}|_{t=0} = \prod_{lpha \in \Phi_{\mathrm{im}}^+} (1 - e^{lpha})^{-\operatorname{\mathsf{mult}}(lpha)}$ 

Remark: sometimes consider  $\alpha \mapsto -\alpha$  (and omit  $\forall$ s).

University of Queensland
Motivation •00 Definition and properties 0000 Affine case

Results beyond affine type 0000000

Further 0000 00

## Formulae of *p*-adic Kac-Moody groups

$$S(\mathbb{1}_{K\pi^{\lambda}K}) = rac{1}{\mathfrak{m}} \cdot rac{t^{\langle 
ho,\lambda
angle}}{P_{\lambda}(t)} \cdot \sum_{w\in W} w\left(e^{\lambda}rac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}}
ight)$$

Macdonald's formula for the spherical function

■ Generalizations: Braverman–Kazhdan–Patnaik (affine), Bardv-Panse–Gaussent–Rousseau (Kac–Moodv)

Taking a limit in  $\lambda$ , this converges to the Gindikin-Karpelevich formula, m persists. (Braverman–Garland–Kazhdan–Patnaik, Hébert, Ali)

Remark. Here  $\mathfrak{m}$  (not  $\mathfrak{m}'$ ) appears, factors corresponding to the multiplicities of imaginary roots were included in  $\mathfrak{m}$ 

Motivation •00 Definition and properties 0000 Affine case

Results beyond affine type 0000000

Further 0000 00

## Formulae of *p*-adic Kac-Moody groups

$$\mathcal{S}(\mathbbm{1}_{K\pi^{\lambda}K}) = rac{1}{\mathfrak{m}} \cdot rac{t^{\langle 
ho,\lambda
angle}}{P_{\lambda}(t)} \cdot \sum_{w\in W} w\left(e^{\lambda}rac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}}
ight)$$

Macdonald's formula for the spherical function

■ Generalizations: Braverman–Kazhdan–Patnaik (affine), Bardy-Panse–Gaussent–Rousseau (Kac–Moody)

Taking a limit in  $\lambda$ , this converges to the Gindikin-Karpelevich formula, m persists. (Braverman–Garland–Kazhdan–Patnaik, Hébert, Ali)

Remark. Here  $\mathfrak{m}$  (not  $\mathfrak{m}'$ ) appears, factors corresponding to the multiplicities of imaginary roots were included in  $\mathfrak{m}$ 

Motivation •00 Definition and properties 0000 Affine case

Results beyond affine type 0000000

Further 0000 00

## Formulae of *p*-adic Kac-Moody groups

$$S(\mathbb{1}_{K\pi^{\lambda}K}) = rac{1}{\mathfrak{m}} \cdot rac{t^{\langle 
ho,\lambda
angle}}{P_{\lambda}(t)} \cdot \sum_{w\in W} w\left(e^{\lambda}rac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}}
ight)$$

- Macdonald's formula for the spherical function
- Generalizations: Braverman–Kazhdan–Patnaik (affine), Bardy-Panse–Gaussent–Rousseau (Kac–Moody)

Taking a limit in  $\lambda$ , this converges to the Gindikin-Karpelevich formula, m persists. (Braverman–Garland–Kazhdan–Patnaik, Hébert, Ali)

Remark. Here  $\mathfrak{m}$  (not  $\mathfrak{m}'$ ) appears, factors corresponding to the multiplicities of imaginary roots were included in  $\mathfrak{m}$ 

Motivation •00 Definition and properties 0000 Affine case

Results beyond affine type 0000000

Further 0000 00

## Formulae of *p*-adic Kac-Moody groups

$$\mathcal{S}(\mathbb{1}_{K\pi^{\lambda}K}) = rac{1}{\mathfrak{m}} \cdot rac{t^{\langle 
ho,\lambda
angle}}{P_{\lambda}(t)} \cdot \sum_{w\in W} w\left(e^{\lambda}rac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}}
ight).$$

- Macdonald's formula for the spherical function
- Generalizations: Braverman–Kazhdan–Patnaik (affine), Bardy-Panse–Gaussent–Rousseau (Kac–Moody)

Taking a limit in  $\lambda$ , this converges to the Gindikin-Karpelevich formula,  $\mathfrak{m}$  persists. (Braverman–Garland–Kazhdan–Patnaik, Hébert, Ali)

Remark. Here  $\mathfrak{m}$  (not  $\mathfrak{m}'$ ) appears, factors corresponding to the multiplicities of imaginary roots were included in  $\mathfrak{m}$ 

Motivation •00 Definition and properties 0000 Affine case

Results beyond affine type 0000000

Further 0000 00

## Formulae of *p*-adic Kac-Moody groups

$$S(\mathbb{1}_{K\pi^{\lambda}K}) = rac{1}{\mathfrak{m}} \cdot rac{t^{\langle 
ho,\lambda
angle}}{P_{\lambda}(t)} \cdot \sum_{w\in W} w\left(e^{\lambda}rac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}}
ight)$$

- Macdonald's formula for the spherical function
- Generalizations: Braverman–Kazhdan–Patnaik (affine), Bardy-Panse–Gaussent–Rousseau (Kac–Moody)

Taking a limit in  $\lambda$ , this converges to the Gindikin-Karpelevich formula, m persists. (Braverman–Garland–Kazhdan–Patnaik, Hébert, Ali)

Remark. Here  $\mathfrak{m} \ (not \ \mathfrak{m}')$  appears, factors corresponding to the multiplicities of imaginary roots were included in  $\mathfrak{m}$ 

Sac

イロト イポト イラト イラト 一支

Motivation 000 Definition and properties 0000

Affine case 00 Results beyond affine type 0000000

Further 0000 00

# Formulae of *p*-adic Kac-Moody groups, continued

 Casselman-Shalika formula for the spherical Whittaker function in affine type [Patnaik]

$$\mathcal{W}(\pi^{\lambda}) = t^{-\langle 
ho,\lambda
angle}\mathfrak{m}'\cdot\prod_{lpha\in\Phi^+}(1-te^{lpha})\chi_{\lambda}$$

Metaplectic analogue in Kac-Moody type [Patnaik, P.]

$$\mathcal{W}(\pi^{\lambda}) = \mathfrak{m}'_{R_n} \, \Delta_{R_n} \, \sum_{w \in W} (-1)^{\ell(w)} \left( \prod_{\widetilde{a} \in R_n(w)} e^{-\widetilde{a}} 
ight) \, w \star e^{\lambda}$$

The factor m relates Hecke symmetrizers to Weyl symmetrizers.

Motivation 000 Definition and properties 0000

Affine case 00 Results beyond affine type 0000000

Further 0000 00

# Formulae of *p*-adic Kac-Moody groups, continued

 Casselman-Shalika formula for the spherical Whittaker function in affine type [Patnaik]

$$\mathcal{W}(\pi^{\lambda}) = t^{-\langle 
ho,\lambda 
angle} \mathfrak{m}' \cdot \prod_{lpha \in \Phi^+} (1 - t e^{lpha}) \chi_{\lambda}$$

Metaplectic analogue in Kac-Moody type [Patnaik, P.]

$$\mathcal{W}(\pi^{\lambda}) = \mathfrak{m}'_{R_n} \, \Delta_{R_n} \, \sum_{w \in W} (-1)^{\ell(w)} \left( \prod_{\widetilde{a} \in R_n(w)} e^{-\widetilde{a}} 
ight) \, w \star e^{\lambda}$$

The factor **m** relates Hecke symmetrizers to Weyl symmetrizers.

 Preview and Background
 Motivation
 Definition and properties
 Affine case

 0000000
 0●0
 0000
 00

Results beyond affine type 0000000

Further 0000 00

# Formulae of *p*-adic Kac-Moody groups, continued

 Casselman-Shalika formula for the spherical Whittaker function in affine type [Patnaik]

$$\mathcal{W}(\pi^{\lambda}) = t^{-\langle 
ho,\lambda
angle}\mathfrak{m}'\cdot\prod_{lpha\in \Phi^+}(1-te^{lpha})\chi_{\lambda}$$

Metaplectic analogue in Kac-Moody type [Patnaik, P.]

$$\mathcal{W}(\pi^{\lambda}) = \mathfrak{m}'_{R_n} \Delta_{R_n} \sum_{w \in W} (-1)^{\ell(w)} \left(\prod_{\widetilde{a} \in R_n(w)} e^{-\widetilde{a}}\right) w \star e^{\lambda}$$

The factor m relates Hecke symmetrizers to Weyl symmetrizers.

 Preview and Background
 Motivation
 Definition and properties

 0000000
 000
 0000

Affine case

Results beyond affine type 0000000

Further 0000 00

# Formulae of *p*-adic Kac-Moody groups, continued

 Casselman-Shalika formula for the spherical Whittaker function in affine type [Patnaik]

$$\mathcal{W}(\pi^{\lambda}) = t^{-\langle 
ho,\lambda
angle}\mathfrak{m}'\cdot\prod_{lpha\in \Phi^+}(1-te^{lpha})\chi_{\lambda}$$

Metaplectic analogue in Kac-Moody type [Patnaik, P.]

$$\mathcal{W}(\pi^{\lambda}) = \mathfrak{m}_{R_n}' \Delta_{R_n} \sum_{w \in W} (-1)^{\ell(w)} \left(\prod_{\widetilde{a} \in R_n(w)} e^{-\widetilde{a}}\right) w \star e^{\lambda}$$

The factor m relates Hecke symmetrizers to Weyl symmetrizers.

<ロ ▶ < □ ▶ < □ ▶ < 三 ▶ < 三 ▶ ○ Q () University of Queensland Preview and Background Motivation Definition and properties 000

Affine case

Results beyond affine type

# Formulae of *p*-adic Kac-Moody groups, continued

Casselman-Shalika formula for the spherical Whittaker function in affine type [Patnaik]

$$\mathcal{W}(\pi^{\lambda}) = t^{-\langle 
ho,\lambda 
angle} \mathfrak{m}' \cdot \prod_{lpha \in \Phi^+} (1 - t e^{lpha}) \chi_{\lambda}$$

Metaplectic analogue in Kac-Moody type [Patnaik, P.]

$$\mathcal{W}(\pi^{\lambda}) = \mathfrak{m}_{R_n}' \Delta_{R_n} \sum_{w \in W} (-1)^{\ell(w)} \left(\prod_{\widetilde{a} \in R_n(w)} e^{-\widetilde{a}}\right) w \star e^{\lambda}$$

University of Queensland

Sac

 Preview and Background
 Motivation
 Definition and properties
 Affine case

 0000000
 0●0
 0000
 00

Results beyond affine type 0000000 Further 0000 00

# Formulae of *p*-adic Kac-Moody groups, continued

 Casselman-Shalika formula for the spherical Whittaker function in affine type [Patnaik]

$$\mathcal{W}(\pi^{\lambda}) = t^{-\langle 
ho,\lambda 
angle} \mathfrak{m}' \cdot \prod_{lpha \in \mathbf{\Phi}^+} (1 - t e^{lpha}) \chi_{\lambda}$$

Metaplectic analogue in Kac-Moody type [Patnaik, P.]

$$\mathcal{W}(\pi^{\lambda}) = \mathfrak{m}_{R_n}' \Delta_{R_n} \sum_{w \in W} (-1)^{\ell(w)} \left(\prod_{\widetilde{a} \in R_n(w)} e^{-\widetilde{a}}\right) w \star e^{\lambda}$$

The factor m relates Hecke symmetrizers to Weyl symmetrizers.

University of Queensland

Sac

《日》《詞》《臣》《臣》

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|------------------------|------------|---------------------------|-------------|----------------------------|---------|
| 0000000                | 000        | 0000                      | 00          | 000000                     | 0000    |

## Macdonald's second proof of $1 \cdot \sum_{w \in W} w\left(\frac{\Delta_t}{\Delta}\right) = P(t)$ for finite W

Computation of the Betti numbers of a flag variety using Hodge theory.

- Right hand side: counting Schubert cells
- Left hand side: a computation of Dolbeault cohomology using localization at fixed points for the action of the maximal torus.
- The flag variety is smooth and projective Dolbeault cohomology is equal to Betti cohomology by the Hodge theorem.

Failure of  $\mathfrak{m} = 1$  beyond finite type  $\Rightarrow$  Kac-Moody flag varieties are not smooth; they are homogeneous  $\Rightarrow$  everywhere singular.

Fishel-Grojnowski-Teleman explicitly compute the Dolbeault cohomology of the affine flag variety, prove *Strong Macdonald Conjecture*.

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further    |
|------------------------|------------|---------------------------|-------------|----------------------------|------------|
| 0000000                | 00●        | 0000                      | 00          | 000000                     | 0000<br>00 |

Macdonald's second proof of  $1 \cdot \sum_{w \in W} w\left(\frac{\Delta_t}{\Delta}\right) = P(t)$  for finite W

Computation of the Betti numbers of a flag variety using Hodge theory.

- Right hand side: counting Schubert cells
- Left hand side: a computation of Dolbeault cohomology using localization at fixed points for the action of the maximal torus.
- The flag variety is smooth and projective Dolbeault cohomology is equal to Betti cohomology by the Hodge theorem.

Failure of  $\mathfrak{m} = 1$  beyond finite type  $\Rightarrow$  Kac-Moody flag varieties are not smooth; they are homogeneous  $\Rightarrow$  everywhere singular.

Fishel-Grojnowski-Teleman explicitly compute the Dolbeault cohomology of the affine flag variety, prove *Strong Macdonald Conjecture*.

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further    |
|------------------------|------------|---------------------------|-------------|----------------------------|------------|
| 0000000                | 00●        | 0000                      | 00          | 0000000                    | 0000<br>00 |

Macdonald's second proof of  $1 \cdot \sum_{w \in W} w\left(\frac{\Delta_t}{\Delta}\right) = P(t)$  for finite W

Computation of the Betti numbers of a flag variety using Hodge theory.

- Right hand side: counting Schubert cells
- Left hand side: a computation of Dolbeault cohomology using localization at fixed points for the action of the maximal torus.
- The flag variety is smooth and projective Dolbeault cohomology is equal to Betti cohomology by the Hodge theorem.

Failure of  $\mathfrak{m} = 1$  beyond finite type  $\Rightarrow$  Kac-Moody flag varieties are not smooth; they are homogeneous  $\Rightarrow$  everywhere singular.

Fishel-Grojnowski-Teleman explicitly compute the Dolbeault cohomology of the affine flag variety, prove *Strong Macdonald Conjecture*.

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further    |
|------------------------|------------|---------------------------|-------------|----------------------------|------------|
| 000000                 | 000        | 0000                      | 00          | 0000000                    | 0000<br>00 |

Macdonald's second proof of  $1 \cdot \sum_{w \in W} w\left(\frac{\Delta_t}{\Delta}\right) = P(t)$  for finite W

Computation of the Betti numbers of a flag variety using Hodge theory.

- Right hand side: counting Schubert cells
- Left hand side: a computation of Dolbeault cohomology using localization at fixed points for the action of the maximal torus.
- The flag variety is smooth and projective Dolbeault cohomology is equal to Betti cohomology by the Hodge theorem.

Failure of  $\mathfrak{m} = 1$  beyond finite type  $\Rightarrow$  Kac-Moody flag varieties are not smooth; they are homogeneous  $\Rightarrow$  everywhere singular.

Fishel-Grojnowski-Teleman explicitly compute the Dolbeault cohomology of the affine flag variety, prove *Strong Macdonald Conjecture*.

University of Queensland

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further    |
|------------------------|------------|---------------------------|-------------|----------------------------|------------|
| 000000                 | 000        | 0000                      | 00          | 0000000                    | 0000<br>00 |

Macdonald's second proof of  $1 \cdot \sum_{w \in W} w\left(\frac{\Delta_t}{\Delta}\right) = P(t)$  for finite W

Computation of the Betti numbers of a flag variety using Hodge theory.

- Right hand side: counting Schubert cells
- Left hand side: a computation of Dolbeault cohomology using localization at fixed points for the action of the maximal torus.
- The flag variety is smooth and projective Dolbeault cohomology is equal to Betti cohomology by the Hodge theorem.

Failure of  $\mathfrak{m} = 1$  beyond finite type  $\Rightarrow$  Kac-Moody flag varieties are not smooth; they are homogeneous  $\Rightarrow$  everywhere singular.

Fishel-Grojnowski-Teleman explicitly compute the Dolbeault cohomology of the affine flag variety, prove *Strong Macdonald Conjecture*.

<□▶ < □▶ < □▶ < 三▶ < 三▶ = 三 のへぐ

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further    |
|------------------------|------------|---------------------------|-------------|----------------------------|------------|
| 0000000                | 000        | 0000                      | 00          | 0000000                    | 0000<br>00 |

Macdonald's second proof of  $1 \cdot \sum_{w \in W} w\left(\frac{\Delta_t}{\Delta}\right) = P(t)$  for finite W

Computation of the Betti numbers of a flag variety using Hodge theory.

- Right hand side: counting Schubert cells
- Left hand side: a computation of Dolbeault cohomology using localization at fixed points for the action of the maximal torus.
- The flag variety is smooth and projective Dolbeault cohomology is equal to Betti cohomology by the Hodge theorem.

Failure of  $\mathfrak{m} = 1$  beyond finite type  $\Rightarrow$  Kac-Moody flag varieties are not smooth; they are homogeneous  $\Rightarrow$  everywhere singular.

Fishel-Grojnowski-Teleman explicitly compute the Dolbeault cohomology of the affine flag variety, prove *Strong Macdonald Conjecture*.

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Furthe |
|------------------------|------------|---------------------------|-------------|----------------------------|--------|
| 0000000                | 000        | ●000                      | 00          | 0000000                    | 0000   |

#### Preparations

sh to define  $\mathfrak{m} \sum_{n \in W} w\left(\frac{\Delta_n}{\Delta_n}\right)$ 

$$\mathfrak{n}\sum_{w\in W}w\left(\frac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}}\right)\stackrel{?}{=} P(t)$$

$$\Delta_{ ext{re}} = \prod_{lpha \in \Phi_{ ext{re}}^+} (1-e^lpha), \qquad \Delta_{t, ext{re}} = \prod_{lpha \in \Phi_{ ext{re}}^+} (1-te^lpha), \qquad {\mathcal P}(t) = \sum_{w \in W} t^{\ell(w)}$$

 $Q^{+} \supseteq Q^{+}_{im} \text{ cones graded by height;}$ Laurent series units on  $Q^{+}$  have form  $ue^{\lambda_{0}} \prod_{\lambda \in Q^{+} \setminus \{0\}} \prod_{n} (1 - t^{n}e^{\lambda})^{m(\lambda,n)}$   $W \text{ acts on a multiplicative subset containing } \frac{\Delta_{tm}}{\Delta_{re}}$   $\sum_{w \in W} w \left(\frac{\Delta_{t,re}}{\Delta_{re}}\right) \text{ unit in } \mathbb{Z}[[t]][t^{-1}][[Q^{+}]], \text{ regular at } t = 0,$ constant coefficient P(t).

| Preview | and | Background |
|---------|-----|------------|
| 00000   | 000 |            |

Definition and properties •000 Affine case

Results beyond affine type 0000000

Further 0000 00

## Preparations

Recall: we wish to define

$$m\sum_{w\in W}w\left(rac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}}
ight)\stackrel{?}{=}P(t)$$

$$\Delta_{ ext{re}} = \prod_{lpha \in \Phi_{ ext{re}}^+} (1 - e^{lpha}), \qquad \Delta_{t, ext{re}} = \prod_{lpha \in \Phi_{ ext{re}}^+} (1 - t e^{lpha}), \qquad P(t) = \sum_{w \in W} t^{\ell(w)}$$

 $Q^{+} \supseteq Q_{im}^{+} \text{ cones graded by height;}$ Laurent series units on  $Q^{+}$  have form  $ue^{\lambda_{0}} \prod_{\lambda \in Q^{+} \setminus \{0\}} \prod_{n} (1 - t^{n}e^{\lambda})^{m(\lambda,n)}$   $W \text{ acts on a multiplicative subset containing } \frac{\Delta_{t,re}}{\Delta_{re}}$   $\sum_{w \in W} w \left(\frac{\Delta_{t,re}}{\Delta_{re}}\right) \text{ unit in } \mathbb{Z}[[t]][t^{-1}][[Q^{+}]], \text{ regular at } t = 0,$  constant coefficient P(t).

| Preview | and | Background |
|---------|-----|------------|
| 00000   | 000 |            |

Definition and properties •000 Affine case

Results beyond affine type 0000000

Further 0000 00

## Preparations

Recall: we wish to define

$$\mathfrak{m}\sum_{w\in W}w\left(\frac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}}\right)\stackrel{?}{=} P(t)$$

$$\Delta_{\mathrm{re}} = \prod_{\alpha \in \Phi_{\mathrm{re}}^+} (1 - e^{\alpha}), \qquad \Delta_{t,\mathrm{re}} = \prod_{\alpha \in \Phi_{\mathrm{re}}^+} (1 - t e^{\alpha}), \qquad P(t) = \sum_{w \in W} t^{\ell(w)}$$

 $Q^{+} \supseteq Q_{im}^{+} \text{ cones graded by height;}$ Laurent series units on  $Q^{+}$  have form  $ue^{\lambda_{0}} \prod_{\lambda \in Q^{+} \setminus \{0\}} \prod_{n} (1 - t^{n}e^{\lambda})^{m(\lambda,n)}$  W acts on a multiplicative subset containing  $\frac{\Delta_{t,re}}{\Delta_{re}}$   $\sum_{w \in W} w\left(\frac{\Delta_{t,re}}{\Delta_{re}}\right) \text{ unit in } \mathbb{Z}[[t]][t^{-1}][[Q^{+}]], \text{ regular at } t = 0,$ constant coefficient P(t).

| Preview | and | Background |
|---------|-----|------------|
| 00000   | 000 |            |

Definition and properties •000 Affine case

Results beyond affine type 0000000

Further 0000 00

## Preparations

Recall: we wish to define

$$\mathfrak{m}\sum_{w\in W}w\left(rac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}}
ight)\stackrel{?}{=} P(t)$$

$$\Delta_{\mathrm{re}} = \prod_{\alpha \in \Phi_{\mathrm{re}}^+} (1 - e^{\alpha}), \qquad \Delta_{t,\mathrm{re}} = \prod_{\alpha \in \Phi_{\mathrm{re}}^+} (1 - t e^{\alpha}), \qquad P(t) = \sum_{w \in W} t^{\ell(w)}$$

$$\begin{split} & Q^+ \supseteq Q^+_{\mathrm{im}} \text{ cones graded by height;} \\ & \text{Laurent series units on } Q^+ \text{ have form } ue^{\lambda_0} \prod_{\lambda \in Q^+ \setminus \{0\}} \prod_n (1 - t^n e^{\lambda})^{m(\lambda, n)} \\ & W \text{ acts on a multiplicative subset containing } \frac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}} \\ & \sum_{w \in W} w \left( \frac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}} \right) \text{ unit in } \mathbb{Z}[[t]][t^{-1}][[Q^+]], \text{ regular at } t = 0, \\ & \text{ constant coefficient } P(t). \end{split}$$

| Preview | and | Background |
|---------|-----|------------|
| 00000   | 000 |            |

Definition and properties •000 Affine case

Results beyond affine type 0000000

Further 0000 00

## Preparations

Recall: we wish to define  $\mathfrak{m} \sum_{w \in W} w\left(\frac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}}\right) \stackrel{?}{=} P(t)$ 

$$\Delta_{ ext{re}} = \prod_{lpha \in \Phi_{ ext{re}}^+} (1 - e^lpha), \qquad \Delta_{t, ext{re}} = \prod_{lpha \in \Phi_{ ext{re}}^+} (1 - t e^lpha), \qquad \mathcal{P}(t) = \sum_{w \in W} t^{\ell(w)}$$

 $\begin{array}{l} Q^+ \supseteq Q^+_{\mathrm{im}} \text{ cones graded by height;} \\ \text{Laurent series units on } Q^+ \text{ have form } ue^{\lambda_0} \prod_{\lambda \in Q^+ \setminus \{0\}} \prod_n (1 - t^n e^{\lambda})^{m(\lambda,n)} \\ W \text{ acts on a multiplicative subset containing } \frac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}} \\ \sum_{w \in W} w \left( \frac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}} \right) \text{ unit in } \mathbb{Z}[[t]][t^{-1}][[Q^+]], \text{ regular at } t = 0, \\ \text{constant coefficient } P(t). \end{array}$ 

University of Queensland

200

| Preview | and | Background |
|---------|-----|------------|
| 00000   | 000 |            |

Definition and properties •000 Affine case

Results beyond affine type 0000000

Further 0000 00

## Preparations

Recall: we wish to define

$$\mathfrak{m}\sum_{w\in W}w\left(\frac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}}\right)\stackrel{?}{=} P(t)$$

$$\Delta_{ ext{re}} = \prod_{lpha \in \Phi_{ ext{re}}^+} (1-e^lpha), \qquad \Delta_{t, ext{re}} = \prod_{lpha \in \Phi_{ ext{re}}^+} (1-te^lpha), \qquad \mathcal{P}(t) = \sum_{w \in W} t^{\ell(w)}$$

 $\begin{array}{l} Q^+ \supseteq Q^+_{\mathrm{im}} \text{ cones graded by height;} \\ \text{Laurent series units on } Q^+ \text{ have form } ue^{\lambda_0} \prod_{\lambda \in Q^+ \setminus \{0\}} \prod_n (1 - t^n e^{\lambda})^{m(\lambda,n)} \\ W \text{ acts on a multiplicative subset containing } \frac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}} \\ \sum_{w \in W} w \left( \frac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}} \right) \text{ unit in } \mathbb{Z}[[t]][t^{-1}][[Q^+]], \text{ regular at } t = 0, \\ \text{constant coefficient } P(t). \end{array}$ 

University of Queensland

200

| Preview | and | Background |
|---------|-----|------------|
| 00000   | 000 |            |

Definition and properties •000 Affine case

Results beyond affine type 0000000

Further 0000 00

## Preparations

Recall: we wish to define

$$\mathfrak{m}\sum_{w\in W}w\left(\frac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}}\right)\stackrel{?}{=} P(t)$$

$$\Delta_{ ext{re}} = \prod_{lpha \in \Phi_{ ext{re}}^+} (1-e^lpha), \qquad \Delta_{t, ext{re}} = \prod_{lpha \in \Phi_{ ext{re}}^+} (1-te^lpha), \qquad \mathcal{P}(t) = \sum_{w \in W} t^{\ell(w)}$$

 $\begin{array}{l} Q^+ \supseteq Q^+_{\mathrm{im}} \text{ cones graded by height;} \\ \text{Laurent series units on } Q^+ \text{ have form } ue^{\lambda_0} \prod_{\lambda \in Q^+ \setminus \{0\}} \prod_n (1 - t^n e^{\lambda})^{m(\lambda,n)} \\ W \text{ acts on a multiplicative subset containing } \frac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}} \\ \sum_{w \in W} w \left( \frac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}} \right) \text{ unit in } \mathbb{Z}[[t]][t^{-1}][[Q^+]], \text{ regular at } t = 0, \\ \text{ constant coefficient } P(t). \end{array}$ 

Anna Puskás

University of Queensland

Sac

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Furthe |
|------------------------|------------|---------------------------|-------------|----------------------------|--------|
| 0000000                | 000        | 0000                      | 00          | 000000                     | 0000   |

$$\sum_{w\in W} w\left(rac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}}
ight)$$
 and  $P(t)$  unit in  $\mathbb{Z}[[t]][t^{-1}][[Q^+]]$ , regular at  $t=0.$ 

We may define 
$$\mathfrak{m}$$
 by  $\mathfrak{m}\sum_{w\in W} w\left(rac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}}
ight) = P(t)$ 

The factor  $\mathfrak{m}$  is Weyl-invariant and therefore supported on  $Q_{\mathrm{in}}^+$ .

Both m, m<sup>-1</sup> units in  $\mathbb{Z}[t, t^{-1}][[Q^+]]$ , regular at t = 0, constant coefficient 1.

$$\left. \left( \mathfrak{m}^{-1} \frac{\Delta_{\mathrm{re}}}{\Delta_{t,\mathrm{re}}} \right) \right|_{\mathcal{Q}^+_{\mathrm{im}}} = 1$$

University of Queensland

3

Sac

《日》《聞》《臣》《臣》

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|------------------------|------------|---------------------------|-------------|----------------------------|---------|
| 0000000                | 000        | 0000                      | 00          | 0000000                    | 0000    |

$$\sum_{w \in W} w\left(rac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}}
ight)$$
 and  $P(t)$  unit in  $\mathbb{Z}[[t]][t^{-1}][[Q^+]]$ , regular at  $t=0$ .

We may define 
$$\mathfrak{m}$$
 by  $\mathfrak{m}\sum_{w\in W} w\left(rac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}}
ight) = P(t)$ 

The factor  $\mathfrak{m}$  is Weyl-invariant and therefore supported on  $Q_{\mathrm{in}}^+$ .

Both  $\mathfrak{m}$ ,  $\mathfrak{m}^{-1}$  units in  $\mathbb{Z}[t, t^{-1}][[Q^+]]$ , regular at t = 0, constant coefficient 1.

$$\left. \left( \mathfrak{m}^{-1} rac{\Delta_{\mathrm{re}}}{\Delta_{t,\mathrm{re}}} 
ight) 
ight|_{\mathcal{Q}^+_{\mathrm{im}}} = 1$$

University of Queensland

<□▶ < □▶ < 三▶ < 三▶ = 三 のへぐ

Anna Puskás

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|------------------------|------------|---------------------------|-------------|----------------------------|---------|
| 0000000                | 000        | 0000                      | 00          | 0000000                    | 0000    |

$$\sum_{w \in W} w\left(rac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}}
ight)$$
 and  $P(t)$  unit in  $\mathbb{Z}[[t]][t^{-1}][[Q^+]]$ , regular at  $t=0$ .

We may define 
$$\mathfrak{m}$$
 by  $\mathfrak{m}\sum_{w\in W} w\left(rac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}}
ight) = P(t)$ 

The factor  $\mathfrak{m}$  is Weyl-invariant and therefore supported on  $Q_{im}^+$ .

Both m, m<sup>-1</sup> units in  $\mathbb{Z}[t, t^{-1}][[Q^+]]$ , regular at t = 0, constant coefficient 1.

$$\left. \left( \mathfrak{m}^{-1} \frac{\Delta_{\mathrm{re}}}{\Delta_{t,\mathrm{re}}} \right) \right|_{Q^+_{\mathrm{im}}} = 1$$

University of Queensland

<□▶ < □▶ < 三▶ < 三▶ = 三 のへぐ

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|------------------------|------------|---------------------------|-------------|----------------------------|---------|
| 0000000                | 000        | 0000                      | 00          | 0000000                    | 0000    |

$$\sum_{w \in W} w\left(rac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}}
ight)$$
 and  $P(t)$  unit in  $\mathbb{Z}[[t]][t^{-1}][[Q^+]]$ , regular at  $t=0$ .

We may define 
$$\mathfrak{m}$$
 by  $\mathfrak{m}\sum_{w\in W} w\left(rac{\Delta_{t,\mathrm{re}}}{\Delta_{\mathrm{re}}}
ight) = P(t)$ 

The factor  $\mathfrak{m}$  is Weyl-invariant and therefore supported on  $Q_{im}^+$ .

Both  $\mathfrak{m}$ ,  $\mathfrak{m}^{-1}$  units in  $\mathbb{Z}[t, t^{-1}][[Q^+]]$ , regular at t = 0, constant coefficient 1.

$$\left. \left( \mathfrak{m}^{-1} \frac{\Delta_{\mathrm{re}}}{\Delta_{t,\mathrm{re}}} \right) \right|_{Q^+_{\mathrm{im}}} = 1$$

University of Queensland

<□▶ < □▶ < 三▶ < 三▶ = 三 のへぐ

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further    |
|------------------------|------------|---------------------------|-------------|----------------------------|------------|
| 0000000                | 000        | 0000                      | 00          | 0000000                    | 0000<br>00 |

$$\left. \left( \mathfrak{m}^{-1} \frac{\Delta_{\mathrm{re}}}{\Delta_{t,\mathrm{re}}} \right) \right|_{Q^+_{\mathrm{im}}} = 1.$$

In the affine case, this implies "constant term property"

$$\left(\frac{\Delta_{\rm re}}{\Delta_{t,\rm re}}\right)\Big|_{Q^+_{\rm im}} = \mathfrak{m}$$

In the Kac-Moody case, this is not true!

$$\operatorname{Supp}(\mathfrak{a})\subseteq Q^+_{\operatorname{im}}
eq (\mathfrak{a}\cdot\mathfrak{b})|_{Q^+_{\operatorname{im}}}=\mathfrak{a}\cdot(\mathfrak{b})|_{Q^+_{\operatorname{im}}}$$

 $\exists$ 

Sac

・ロト ・ 四ト ・ ヨト ・ ヨト

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Fur |
|------------------------|------------|---------------------------|-------------|----------------------------|-----|
| 0000000                | 000        | 0000                      | 00          | 000000                     | 00  |

$$\left. \left( \mathfrak{m}^{-1} \frac{\Delta_{\mathrm{re}}}{\Delta_{t,\mathrm{re}}} \right) \right|_{Q^+_{\mathrm{im}}} = 1.$$

In the affine case, this implies "constant term property"

$$\left(\frac{\Delta_{\mathrm{re}}}{\Delta_{t,\mathrm{re}}}\right)\Big|_{Q^+_{\mathrm{im}}} = \mathfrak{m}$$

In the Kac-Moody case, this is not true!

$$\operatorname{Supp}(\mathfrak{a}) \subseteq Q_{\operatorname{im}}^{+} \not\Rightarrow (\mathfrak{a} \cdot \mathfrak{b})|_{Q_{\operatorname{im}}^{+}} = \mathfrak{a} \cdot (\mathfrak{b})|_{Q_{\operatorname{im}}^{+}}$$

500

イロト イヨト イミト イミト 二日

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Furtl |
|------------------------|------------|---------------------------|-------------|----------------------------|-------|
| 0000000                | 000        | 0000                      | 00          | 000000                     | 000   |

$$\left. \left( \mathfrak{m}^{-1} rac{\Delta_{\mathrm{re}}}{\Delta_{t,\mathrm{re}}} 
ight) 
ight|_{Q^+_{\mathrm{im}}} = 1.$$

In the affine case, this implies "constant term property"

$$\left(\frac{\Delta_{\mathrm{re}}}{\Delta_{t,\mathrm{re}}}\right)\Big|_{Q^+_{\mathrm{im}}} = \mathfrak{m}$$

In the Kac-Moody case, this is not true!

$$\operatorname{Supp}(\mathfrak{a}) \subseteq Q_{\operatorname{im}}^+ \not\Rightarrow (\mathfrak{a} \cdot \mathfrak{b})|_{Q_{\operatorname{im}}^+} = \mathfrak{a} \cdot (\mathfrak{b})|_{Q_{\operatorname{im}}^+}$$

200

<ロト < 部ト < ミト < ミト = 三</p>

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Furth |
|------------------------|------------|---------------------------|-------------|----------------------------|-------|
| 0000000                | 000        | 0000                      | 00          | 000000                     | 000   |

$$\left. \left( \mathfrak{m}^{-1} rac{\Delta_{\mathrm{re}}}{\Delta_{t,\mathrm{re}}} 
ight) 
ight|_{Q^+_{\mathrm{im}}} = 1.$$

In the affine case, this implies "constant term property"

$$\left(rac{\Delta_{\mathrm{re}}}{\Delta_{t,\mathrm{re}}}
ight)
ight|_{Q^+_{\mathrm{im}}}=\mathfrak{m}$$

In the Kac-Moody case, this is not true!

$$\mathsf{Supp}(\mathfrak{a})\subseteq Q^+_{\mathrm{im}}\not\Rightarrow (\mathfrak{a}\cdot\mathfrak{b})|_{Q^+_{\mathrm{im}}}=\mathfrak{a}\cdot(\mathfrak{b})|_{Q^+_{\mathrm{im}}}$$

University of Queensland

500

<ロト < 部ト < ミト < ミト = 三</p>

Anna Puskás

Motivation 000 Definition and properties

Affine case 00 Results beyond affine type 0000000

Further 0000 00





Anna Puskás

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|------------------------|------------|---------------------------|-------------|----------------------------|---------|
| 000000                 | 000        | 0000                      | •0          | 000000                     | 0000    |

$$\mathfrak{m} = \prod_{i=1}^{\infty} \left( \left( \frac{1-t \cdot e^{i \cdot \delta}}{1-e^{i \cdot \delta}} \right)^r \cdot \prod_{j=1}^r \frac{1-t^{m_j} \cdot e^{i \cdot \delta}}{1-t^{m_j+1} \cdot e^{i \cdot \delta}} \right)$$

$$\mathfrak{m} = \prod_{i=1}^{\infty} \prod_{j=1}^{r} \left( \prod_{k=1}^{m_j} \frac{(1-t^k \cdot e^{i \cdot \delta})^2}{(1-t^{k-1}e^{i \cdot \delta})(1-t^{k+1}e^{i \cdot \delta})} \right)$$

$$-m_{l\cdot\delta}(t)=\sum_{j=1}^r \left(\sum_{k=1}^{m_j}t^{k-1}\cdot(-1+2t-t^2)
ight)=-(1-t)^2\cdot\sum_{j=1}^rrac{t^{m_j}-1}{t-1}$$

3 University of Queensland

DQR

◆ロト ◆聞 ト ◆ ヨト ◆ ヨト

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|------------------------|------------|---------------------------|-------------|----------------------------|---------|
| 000000                 | 000        | 0000                      | •0          | 0000000                    | 0000    |

#### Cherednik's solution of Macdonald's Constant Term Conjecture: $\mathfrak{m}$ is known for $\Phi$ of affine type.

$$\mathfrak{m} = \prod_{i=1}^{\infty} \left( \left( \frac{1-t \cdot e^{i \cdot \delta}}{1-e^{i \cdot \delta}} \right)^r \cdot \prod_{j=1}^r \frac{1-t^{m_j} \cdot e^{i \cdot \delta}}{1-t^{m_j+1} \cdot e^{i \cdot \delta}} \right)$$

$$\mathfrak{m} = \prod_{i=1}^{\infty} \prod_{j=1}^{r} \left( \prod_{k=1}^{m_j} \frac{(1-t^k \cdot e^{i \cdot \delta})^2}{(1-t^{k-1}e^{i \cdot \delta})(1-t^{k+1}e^{i \cdot \delta})} \right)$$

$$-m_{i\cdot\delta}(t)=\sum_{j=1}^r\left(\sum_{k=1}^{m_j}t^{k-1}\cdot(-1+2t-t^2)
ight)=-(1-t)^2\cdot\sum_{j=1}^rrac{t^{m_j}-1}{t-1}$$

3 University of Queensland

Sac

《曰》《聞》《臣》《臣》

| eview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|----------------------|------------|---------------------------|-------------|----------------------------|---------|
| 000000               | 000        | 0000                      | •0          | 0000000                    | 0000    |

Cherednik's solution of Macdonald's Constant Term Conjecture:  ${\mathfrak m}$  is known for  $\Phi$  of affine type.

For untwisted, simply laced affine types:

$$\mathfrak{m} = \prod_{i=1}^{\infty} \left( \left( \frac{1-t \cdot e^{i \cdot \delta}}{1-e^{i \cdot \delta}} \right)^r \cdot \prod_{j=1}^r \frac{1-t^{m_j} \cdot e^{i \cdot \delta}}{1-t^{m_j+1} \cdot e^{i \cdot \delta}} \right)$$

where r is the rank,  $m_j$  exponents of underlying finite-dimensional root system,  $\delta$  the minimal imaginary root.

$$\mathfrak{m} = \prod_{i=1}^{\infty} \prod_{j=1}^{r} \left( \prod_{k=1}^{m_j} \frac{(1-t^k \cdot e^{i \cdot \delta})^2}{(1-t^{k-1}e^{i \cdot \delta})(1-t^{k+1}e^{i \cdot \delta})} \right)$$

$$-m_{i\cdot\delta}(t) = \sum_{j=1}^r \left(\sum_{k=1}^{m_j} t^{k-1} \cdot (-1+2t-t^2)\right) = -(1-t)^2 \cdot \sum_{j=1}^r \frac{t^{m_j}-1}{t-1}$$

University of Queensland

Sac

イロト イヨト イミト イミト 二日
| eview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|----------------------|------------|---------------------------|-------------|----------------------------|---------|
| 000000               | 000        | 0000                      | •0          | 0000000                    | 0000    |

Cherednik's solution of Macdonald's Constant Term Conjecture:  $\mathfrak{m}$  is known for  $\Phi$  of affine type.

For untwisted, simply laced affine types:

$$\mathfrak{m} = \prod_{i=1}^{\infty} \left( \left( \frac{1-t \cdot e^{i \cdot \delta}}{1-e^{i \cdot \delta}} \right)^r \cdot \prod_{j=1}^r \frac{1-t^{m_j} \cdot e^{i \cdot \delta}}{1-t^{m_j+1} \cdot e^{i \cdot \delta}} \right)$$

where r is the rank,  $m_j$  exponents of underlying finite-dimensional root system,  $\delta$  the minimal imaginary root.

$$\mathfrak{m} = \prod_{i=1}^{\infty} \prod_{j=1}^{r} \left( \prod_{k=1}^{m_j} \frac{(1-t^k \cdot e^{j \cdot \delta})^2}{(1-t^{k-1}e^{i \cdot \delta})(1-t^{k+1}e^{j \cdot \delta})} \right)$$

$$-m_{i\cdot\delta}(t) = \sum_{j=1}^r \left(\sum_{k=1}^{m_j} t^{k-1} \cdot (-1+2t-t^2)
ight) = -(1-t)^2 \cdot \sum_{j=1}^r rac{t^{m_j}-1}{t-1}$$

University of Queensland

▲ロト ▲母 ト ▲ 三 ト ▲ 三 ト - ○ ○ ○ ○

| eview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|----------------------|------------|---------------------------|-------------|----------------------------|---------|
| 000000               | 000        | 0000                      | •0          | 0000000                    | 0000    |

Cherednik's solution of Macdonald's Constant Term Conjecture:  ${\mathfrak m}$  is known for  $\Phi$  of affine type.

For untwisted, simply laced affine types:

$$\mathfrak{m} = \prod_{i=1}^{\infty} \left( \left( \frac{1-t \cdot e^{i \cdot \delta}}{1-e^{i \cdot \delta}} \right)^r \cdot \prod_{j=1}^r \frac{1-t^{m_j} \cdot e^{i \cdot \delta}}{1-t^{m_j+1} \cdot e^{i \cdot \delta}} \right)$$

where r is the rank,  $m_j$  exponents of underlying finite-dimensional root system,  $\delta$  the minimal imaginary root.

$$\mathfrak{m} = \prod_{i=1}^{\infty} \prod_{j=1}^{r} \left( \prod_{k=1}^{m_j} \frac{(1-t^k \cdot e^{i \cdot \delta})^2}{(1-t^{k-1}e^{i \cdot \delta})(1-t^{k+1}e^{i \cdot \delta})} \right)$$

$$-m_{i\cdot\delta}(t) = \sum_{j=1}^{r} \left( \sum_{k=1}^{m_j} t^{k-1} \cdot (-1+2t-t^2) \right) = -(1-t)^2 \cdot \sum_{j=1}^{r} \frac{t^{m_j}-1}{t-1}$$

University of Queensland

| eview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|----------------------|------------|---------------------------|-------------|----------------------------|---------|
| 000000               | 000        | 0000                      | •0          | 0000000                    | 0000    |

Cherednik's solution of Macdonald's Constant Term Conjecture:  ${\mathfrak m}$  is known for  $\Phi$  of affine type.

For untwisted, simply laced affine types:

$$\mathfrak{m} = \prod_{i=1}^{\infty} \left( \left( \frac{1-t \cdot e^{i \cdot \delta}}{1-e^{i \cdot \delta}} \right)^r \cdot \prod_{j=1}^r \frac{1-t^{m_j} \cdot e^{i \cdot \delta}}{1-t^{m_j+1} \cdot e^{i \cdot \delta}} \right)$$

where r is the rank,  $m_j$  exponents of underlying finite-dimensional root system,  $\delta$  the minimal imaginary root.

$$\mathfrak{m} = \prod_{i=1}^{\infty} \prod_{j=1}^{r} \left( \prod_{k=1}^{m_j} \frac{(1-t^k \cdot e^{i \cdot \delta})^2}{(1-t^{k-1}e^{i \cdot \delta})(1-t^{k+1}e^{i \cdot \delta})} \right)$$

$$-m_{i\cdot\delta}(t) = \sum_{j=1}^{r} \left( \sum_{k=1}^{m_j} t^{k-1} \cdot (-1+2t-t^2) \right) = -(1-t)^2 \cdot \sum_{j=1}^{r} \frac{t^{m_j}-1}{t-1}$$

University of Queensland

| eview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|----------------------|------------|---------------------------|-------------|----------------------------|---------|
| 000000               | 000        | 0000                      | •0          | 0000000                    | 0000    |

Cherednik's solution of Macdonald's Constant Term Conjecture:  ${\mathfrak m}$  is known for  $\Phi$  of affine type.

For untwisted, simply laced affine types:

$$\mathfrak{m} = \prod_{i=1}^{\infty} \left( \left( \frac{1-t \cdot e^{i \cdot \delta}}{1-e^{i \cdot \delta}} \right)^r \cdot \prod_{j=1}^r \frac{1-t^{m_j} \cdot e^{i \cdot \delta}}{1-t^{m_j+1} \cdot e^{i \cdot \delta}} \right)$$

where r is the rank,  $m_j$  exponents of underlying finite-dimensional root system,  $\delta$  the minimal imaginary root.

$$\mathfrak{m} = \prod_{i=1}^{\infty} \prod_{j=1}^{r} \left( \prod_{k=1}^{m_j} \frac{(1-t^k \cdot e^{i \cdot \delta})^2}{(1-t^{k-1}e^{i \cdot \delta})(1-t^{k+1}e^{i \cdot \delta})} \right)$$

$$-m_{i\cdot\delta}(t) = \sum_{j=1}^{r} \left( \sum_{k=1}^{m_j} t^{k-1} \cdot (-1+2t-t^2) \right) = -(1-t)^2 \cdot \sum_{j=1}^{r} \frac{t^{m_j}-1}{t-1}$$

University of Queensland

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|------------------------|------------|---------------------------|-------------|----------------------------|---------|
| 0000000                | 000        | 0000                      | 0●          | 0000000                    | 0000    |

$$\mathfrak{m} = \prod_{\lambda \in \mathcal{Q}_{\mathrm{im}}^+} \left( \prod_{\beta \in \mathcal{S}(\lambda)} \frac{(1 - t^{\mathrm{ht}(\beta)} e^{\lambda})^2}{(1 - t^{\mathrm{ht}(\beta) - 1} e^{\lambda})(1 - t^{\mathrm{ht}(\beta) + 1} e^{\lambda})} \right)$$

where

$$S(\lambda) = \{ \beta \in Q_{\mathrm{fin}}^+ \mid \beta + \lambda \in \Phi_{\mathrm{re}} \},$$

 $Q_{\text{fin}}^+$  is a root lattice corresponding to a finite root subsystem  $\Phi_{\text{fin}} \subseteq \Phi$  determined by omitting an appropriate simple root.

$$m_{\lambda} = (1-t)^2 \cdot \sum_{\beta \in S(\lambda)} t^{\operatorname{ht}(\beta)-1}$$

University of Queensland

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further    |
|------------------------|------------|---------------------------|-------------|----------------------------|------------|
| 000000                 | 000        | 0000                      | 0•          | 000000                     | 0000<br>00 |

$$\mathfrak{m} = \prod_{\lambda \in \mathcal{Q}^+_{\mathrm{im}}} \left( \prod_{\beta \in \mathcal{S}(\lambda)} \frac{(1 - t^{\mathrm{ht}(\beta)} e^{\lambda})^2}{(1 - t^{\mathrm{ht}(\beta) - 1} e^{\lambda})(1 - t^{\mathrm{ht}(\beta) + 1} e^{\lambda})} \right)$$

where

$$S(\lambda) = \{ eta \in \mathcal{Q}^+_{ ext{fin}} \mid eta + \lambda \in \Phi_{ ext{re}} \},$$

 $Q_{\rm fin}^+$  is a root lattice corresponding to a finite root subsystem  $\Phi_{\rm fin} \subseteq \Phi$  determined by omitting an appropriate simple root.

$$m_{\lambda} = (1-t)^2 \cdot \sum_{eta \in \mathcal{S}(\lambda)} t^{\operatorname{ht}(eta)-1}$$

University of Queensland

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further    |
|------------------------|------------|---------------------------|-------------|----------------------------|------------|
| 000000                 | 000        | 0000                      | 0•          | 000000                     | 0000<br>00 |

$$\mathfrak{m} = \prod_{\lambda \in \mathcal{Q}^+_{\mathrm{im}}} \left( \prod_{\beta \in \mathcal{S}(\lambda)} \frac{(1 - t^{\mathrm{ht}(\beta)} e^{\lambda})^2}{(1 - t^{\mathrm{ht}(\beta) - 1} e^{\lambda})(1 - t^{\mathrm{ht}(\beta) + 1} e^{\lambda})} \right)$$

#### where

#### $\mathcal{S}(\lambda) = \{eta \in \mathcal{Q}_{ ext{fin}}^+ \mid eta + \lambda \in \Phi_{ ext{re}}\},$

 $Q_{\text{fin}}^+$  is a root lattice corresponding to a finite root subsystem  $\Phi_{\text{fin}} \subseteq \Phi$  determined by omitting an appropriate simple root.

$$m_\lambda = (1-t)^2 \cdot \sum_{eta \in S(\lambda)} t^{ ext{ht}(eta)-1}$$

University of Queensland

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|------------------------|------------|---------------------------|-------------|----------------------------|---------|
| 000000                 | 000        | 0000                      | 0•          | 000000                     | 0000    |

$$\mathfrak{m} = \prod_{\lambda \in \mathcal{Q}^+_{\mathrm{im}}} \left( \prod_{\beta \in \mathcal{S}(\lambda)} \frac{(1 - t^{\mathrm{ht}(\beta)} e^{\lambda})^2}{(1 - t^{\mathrm{ht}(\beta) - 1} e^{\lambda})(1 - t^{\mathrm{ht}(\beta) + 1} e^{\lambda})} \right)$$

where

$$\mathcal{S}(\lambda) = \{eta \in \mathcal{Q}_{ ext{fin}}^+ \mid eta + \lambda \in \Phi_{ ext{re}}\}$$
 ,

 $Q_{\rm fin}^+$  is a root lattice corresponding to a finite root subsystem  $\Phi_{\rm fin} \subseteq \Phi$  determined by omitting an appropriate simple root.

$$m_\lambda = (1-t)^2 \cdot \sum_{eta \in S(\lambda)} t^{\operatorname{ht}(eta)-1}$$

University of Queensland

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|------------------------|------------|---------------------------|-------------|----------------------------|---------|
| 000000                 | 000        | 0000                      | 0•          | 000000                     | 0000    |

$$\mathfrak{m} = \prod_{\lambda \in \mathcal{Q}^+_{\mathrm{im}}} \left( \prod_{\beta \in \mathcal{S}(\lambda)} \frac{(1 - t^{\mathrm{ht}(\beta)} e^{\lambda})^2}{(1 - t^{\mathrm{ht}(\beta) - 1} e^{\lambda})(1 - t^{\mathrm{ht}(\beta) + 1} e^{\lambda})} \right)$$

where

$$\mathcal{S}(\lambda) = \{eta \in \mathcal{Q}_{ ext{fin}}^+ \mid eta + \lambda \in \Phi_{ ext{re}}\}$$
 ,

 $Q_{\rm fin}^+$  is a root lattice corresponding to a finite root subsystem  $\Phi_{\rm fin} \subseteq \Phi$  determined by omitting an appropriate simple root.

$$m_\lambda = (1-t)^2 \cdot \sum_{eta \in \mathcal{S}(\lambda)} t^{\operatorname{ht}(eta)-1}$$

University of Queensland

Definition and properties

Affine case

Results beyond affine type •000000

# Generalized Petersen algorithm

We wish to write

$$\mathfrak{m} = \prod_{\lambda \in \mathcal{Q}^+_{\mathrm{im}}} \prod_{n=0}^{N_{\lambda}} (1 - t^n e^{\lambda})^{-m(\lambda,n)}$$

starting from

$$\left(\mathfrak{m}^{-1} \frac{\Delta_{\mathrm{re}}}{\Delta_{t,\mathrm{re}}}\right)\Big|_{Q^+_{\mathrm{im}}} = 1$$

- $\blacksquare$  power series inverse with respect to  $Q_{im}^+$
- by induction on height
- algorithm polynomial in height
- generalization of the Petersen algorithm for  $mult(\lambda)$
- suffices to compute for one  $\lambda$  per W-orbit, i.e. on antidominant cone

3 University of Queensland

Sac

< ロト < 同ト < 三ト < 三ト

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|------------------------|------------|---------------------------|-------------|----------------------------|---------|
| 0000000                | 000        | 0000                      | 00          | 000000                     | 0000    |



▶ < 콜 ▶ < 콜 ▶ 콜 ∽ Q (~ University of Queensland

| Preview and Background<br>0000000 | Motivation<br>000 | Definition and properties<br>0000 | Affine case<br>00 | Results beyond affine type<br>000000 | Further<br>0000<br>00 |
|-----------------------------------|-------------------|-----------------------------------|-------------------|--------------------------------------|-----------------------|
|                                   |                   |                                   |                   |                                      |                       |



<ロト 4 回 ト 4 三 ト 4 三 ト 一 三 一 つ Q ()</p>

University of Queensland

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|------------------------|------------|---------------------------|-------------|----------------------------|---------|
| 0000000                | 000        | 0000                      | 00          | 0000000                    | 0000    |

$$\mathfrak{m} = \prod_{\lambda \in Q_{\mathrm{im}}^+} \prod_{n=0}^{N_{\lambda}} (1 - t^n e^{\lambda})^{-m(\lambda,n)}$$

Set  $N_{\alpha} = 1$ ,  $m(\alpha, 0) = 1$ ,  $m(\alpha, 1) = -1$  for  $\alpha \in \Phi_{re}$ ;  $m(\lambda, n) = 0$  if  $\lambda$  is not an imaginary vector or a real root.

$$\left( \mathfrak{m}^{-1} \frac{\Delta_{\mathrm{re}}}{\Delta_{t,\mathrm{re}}} \right) \Big|_{Q_{\mathrm{im}}^{+}} = 1; \quad \mathfrak{m}^{-1} \frac{\Delta_{\mathrm{re}}}{\Delta_{t,\mathrm{re}}} = \prod_{\lambda \in Q^{+}} \prod_{n=0}^{N_{\lambda}} (1 - t^{n} e^{\lambda})^{m(\lambda,n)} = \prod_{\lambda \in Q^{+}} \mathfrak{m}_{\lambda}^{-1}$$
$$\mathfrak{m}_{\lambda}^{-1} \cdot \prod_{\substack{\mu \in Q^{+} \\ \operatorname{ht}(\mu) < \operatorname{ht}(\lambda)}} \mathfrak{m}_{\mu}^{-1} \Big|_{\lambda} = 0$$

University of Queensland

500

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|------------------------|------------|---------------------------|-------------|----------------------------|---------|
| 0000000                | 000        | 0000                      | 00          | 000000                     | 0000    |

$$\mathfrak{m} = \prod_{\lambda \in \mathcal{Q}^+_{\mathrm{im}}} \prod_{n=0}^{N_{\lambda}} (1 - t^n e^{\lambda})^{-m(\lambda,n)}$$

$$\begin{pmatrix} \mathfrak{m}^{-1} \frac{\Delta_{\mathrm{re}}}{\Delta_{t,\mathrm{re}}} \end{pmatrix} \Big|_{Q_{\mathrm{im}}^{+}} = 1; \quad \mathfrak{m}^{-1} \frac{\Delta_{\mathrm{re}}}{\Delta_{t,\mathrm{re}}} = \prod_{\lambda \in Q^{+}} \prod_{n=0}^{N_{\lambda}} (1 - t^{n} e^{\lambda})^{m(\lambda,n)} = \prod_{\lambda \in Q^{+}} \mathfrak{m}_{\lambda}^{-1}$$
$$\mathfrak{m}_{\lambda}^{-1} \cdot \prod_{\mu \in Q^{+}} \mathfrak{m}_{\mu}^{-1} \Big|_{\mu = 0}$$

Э University of Queensland

Sar

< ロト < 部 ト < 臣 ト < 臣 ト ·

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|------------------------|------------|---------------------------|-------------|----------------------------|---------|
| 0000000                | 000        | 0000                      | 00          | 000000                     | 0000    |

$$\mathfrak{m} = \prod_{\lambda \in \mathcal{Q}^+_{\mathrm{im}}} \prod_{n=0}^{N_{\lambda}} (1 - t^n e^{\lambda})^{-m(\lambda,n)}$$

Set  $N_{\alpha} = 1$ ,  $m(\alpha, 0) = 1$ ,  $m(\alpha, 1) = -1$  for  $\alpha \in \Phi_{re}$ ;  $m(\lambda, n) = 0$  if  $\lambda$  is not an imaginary vector or a real root.

$$\left( \mathfrak{m}^{-1} \frac{\Delta_{\mathrm{re}}}{\Delta_{t,\mathrm{re}}} \right) \Big|_{Q_{\mathrm{im}}^{+}} = 1; \quad \mathfrak{m}^{-1} \frac{\Delta_{\mathrm{re}}}{\Delta_{t,\mathrm{re}}} = \prod_{\lambda \in Q^{+}} \prod_{n=0}^{N_{\lambda}} (1 - t^{n} e^{\lambda})^{m(\lambda,n)} = \prod_{\lambda \in Q^{+}} \mathfrak{m}_{\lambda}^{-1}$$
$$\mathfrak{m}_{\lambda}^{-1} \cdot \prod_{\substack{\mu \in Q^{+} \\ \mathsf{ht}(\mu) < \mathsf{ht}(\lambda)}} \mathfrak{m}_{\mu}^{-1} \Big|_{\lambda} = 0$$

University of Queensland

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|------------------------|------------|---------------------------|-------------|----------------------------|---------|
| 0000000                | 000        | 0000                      | 00          | 0000000                    | 0000    |

$$\mathfrak{m} = \prod_{\lambda \in \mathcal{Q}^+_{ ext{im}}} \prod_{n=0}^{N_\lambda} (1 - t^n e^{\lambda})^{-m(\lambda,n)}$$

Set  $N_{\alpha} = 1$ ,  $m(\alpha, 0) = 1$ ,  $m(\alpha, 1) = -1$  for  $\alpha \in \Phi_{re}$ ;  $m(\lambda, n) = 0$  if  $\lambda$  is not an imaginary vector or a real root.

$$\left( \mathfrak{m}^{-1} \frac{\Delta_{\mathrm{re}}}{\Delta_{t,\mathrm{re}}} \right) \Big|_{Q_{\mathrm{im}}^{+}} = 1; \quad \mathfrak{m}^{-1} \frac{\Delta_{\mathrm{re}}}{\Delta_{t,\mathrm{re}}} = \prod_{\lambda \in Q^{+}} \prod_{n=0}^{N_{\lambda}} (1 - t^{n} e^{\lambda})^{m(\lambda,n)} = \prod_{\lambda \in Q^{+}} \mathfrak{m}_{\lambda}^{-1}$$
$$\mathfrak{m}_{\lambda}^{-1} \cdot \prod_{\substack{\mu \in Q^{+} \\ \mathsf{ht}(\mu) < \mathsf{ht}(\lambda)}} \mathfrak{m}_{\mu}^{-1} \Big|_{\lambda} = 0$$

University of Queensland

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|------------------------|------------|---------------------------|-------------|----------------------------|---------|
| 000000                 | 000        | 0000                      | 00          | 0000000                    | 0000    |

$$\mathfrak{m}_{\lambda}^{-1} \cdot \prod_{\substack{\mu \in Q^+ \\ \mathsf{ht}(\mu) < \mathsf{ht}(\lambda)}} \mathfrak{m}_{\mu}^{-1} \bigg|_{\lambda} = \prod_{n=0}^{N_{\lambda}} (1 - t^n e^{\lambda})^{m(\lambda, n)} \cdot \prod_{\substack{\mu \in Q^+ \\ \mathsf{ht}(\mu) < \mathsf{ht}(\lambda)}} \mathfrak{m}_{\mu}^{-1} \bigg|_{\lambda} = 0$$

Set  $\mathfrak{m}_0 = 1$ . Assume  $\operatorname{ht}(\lambda) > 0$ , and  $\mathfrak{m}_{\mu}$  known for  $\operatorname{ht}(\mu) < \operatorname{ht}(\lambda)$   $\mu \in Q_{\operatorname{im}}^+$ : from previous steps of the induction  $\mu \notin Q_{\operatorname{im}}^+$ : by computing real roots up to  $\operatorname{ht}(\lambda)$ The coefficient of  $e^{\lambda}$  in  $\prod_{\substack{\mu \in Q^+ \\ \operatorname{ht}(\mu) < \operatorname{ht}(\lambda)}} \mathfrak{m}_{\mu}^{-1}$  is a polynomial in t := $\mathfrak{m}_{\mu}(\lambda, 0) + \mathfrak{m}_{\mu}(\lambda, 1)t + \cdots + \mathfrak{m}_{\mu}(\lambda, N_{\lambda})t^{N_{\lambda}}$ 

> ৰ≣ ► ≣ ৩৭০ University of Queensland

◆ロト ◆聞 ト ◆ ヨト ◆ ヨト

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|------------------------|------------|---------------------------|-------------|----------------------------|---------|
| 000000                 | 000        | 0000                      | 00          | 0000000                    | 0000    |

$$\mathfrak{m}_{\lambda}^{-1} \cdot \prod_{\substack{\mu \in Q^+ \\ \mathsf{ht}(\mu) < \mathsf{ht}(\lambda)}} \mathfrak{m}_{\mu}^{-1} \bigg|_{\lambda} = \prod_{n=0}^{N_{\lambda}} (1 - t^n e^{\lambda})^{m(\lambda, n)} \cdot \prod_{\substack{\mu \in Q^+ \\ \mathsf{ht}(\mu) < \mathsf{ht}(\lambda)}} \mathfrak{m}_{\mu}^{-1} \bigg|_{\lambda} = 0$$

Set  $\mathfrak{m}_0 = 1$ .

Assume  $\operatorname{ht}(\lambda) > 0$ , and  $\mathfrak{m}_{\mu}$  known for  $\operatorname{ht}(\mu) < \operatorname{ht}(\lambda)$  $\mu \in Q_{\operatorname{im}}^+$ : from previous steps of the induction  $\mu \notin Q_{\operatorname{im}}^+$ : by computing real roots up to  $\operatorname{ht}(\lambda)$ 

The coefficient of 
$$e^{\lambda}$$
 in  $\prod_{\substack{\mu \in Q^+ \\ ht(\mu) < ht(\lambda)}} m_{\mu}^{-1}$  is a polynomial in  $t := m(\lambda, 0) + m(\lambda, 1)t + \dots + m(\lambda, N_{\lambda})t^{N_{\lambda}}$ 

University of Queensland

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|------------------------|------------|---------------------------|-------------|----------------------------|---------|
| 000000                 | 000        | 0000                      | 00          | 0000000                    | 0000    |

$$\mathfrak{m}_{\lambda}^{-1} \cdot \prod_{\substack{\mu \in Q^+ \\ \mathsf{ht}(\mu) < \mathsf{ht}(\lambda)}} \mathfrak{m}_{\mu}^{-1} \bigg|_{\lambda} = \prod_{n=0}^{N_{\lambda}} (1 - t^n e^{\lambda})^{m(\lambda, n)} \cdot \prod_{\substack{\mu \in Q^+ \\ \mathsf{ht}(\mu) < \mathsf{ht}(\lambda)}} \mathfrak{m}_{\mu}^{-1} \bigg|_{\lambda} = 0$$

Set  $\mathfrak{m}_0 = 1$ . Assume  $\operatorname{ht}(\lambda) > 0$ , and  $\mathfrak{m}_{\mu}$  known for  $\operatorname{ht}(\mu) < \operatorname{ht}(\lambda)$   $\mu \in Q_{\operatorname{im}}^+$ : from previous steps of the induction  $\mu \notin Q_{\operatorname{im}}^+$ : by computing real roots up to  $\operatorname{ht}(\lambda)$ The coefficient of  $e^{\lambda}$  in  $\prod_{\substack{\mu \in Q^+\\ \operatorname{ht}(\mu) < \operatorname{ht}(\lambda)}} \mathfrak{m}_{\mu}^{-1}$  is a polynomial in t :=

University of Queensland

Sac

イロト イポト イラト イラト 二日

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|------------------------|------------|---------------------------|-------------|----------------------------|---------|
| 000000                 | 000        | 0000                      | 00          | 0000000                    | 0000    |

$$\mathfrak{m}_{\lambda}^{-1} \cdot \prod_{\substack{\mu \in Q^+ \\ \mathsf{ht}(\mu) < \mathsf{ht}(\lambda)}} \mathfrak{m}_{\mu}^{-1} \bigg|_{\lambda} = \prod_{n=0}^{N_{\lambda}} (1 - t^n e^{\lambda})^{m(\lambda, n)} \cdot \prod_{\substack{\mu \in Q^+ \\ \mathsf{ht}(\mu) < \mathsf{ht}(\lambda)}} \mathfrak{m}_{\mu}^{-1} \bigg|_{\lambda} = 0$$

Set  $\mathfrak{m}_0 = 1$ . Assume  $\operatorname{ht}(\lambda) > 0$ , and  $\mathfrak{m}_{\mu}$  known for  $\operatorname{ht}(\mu) < \operatorname{ht}(\lambda)$   $\mu \in Q_{\operatorname{im}}^+$ : from previous steps of the induction  $\mu \notin Q_{\operatorname{im}}^+$ : by computing real roots up to  $\operatorname{ht}(\lambda)$ The coefficient of  $e^{\lambda}$  in  $\prod_{\substack{\mu \in Q^+ \\ \operatorname{ht}(\mu) < \operatorname{ht}(\lambda)}} \mathfrak{m}_{\mu}^{-1}$  is a polynomial in t := $\mathfrak{m}(\lambda, 0) + \mathfrak{m}(\lambda, 1)t + \cdots + \mathfrak{m}(\lambda, N_{\lambda})t^{N_{\lambda}}$ 

University of Queensland

Sac

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|------------------------|------------|---------------------------|-------------|----------------------------|---------|
| 000000                 | 000        | 0000                      | 00          | 0000000                    | 0000    |

$$\mathfrak{m}_{\lambda}^{-1} \cdot \prod_{\substack{\mu \in Q^+ \\ \mathsf{ht}(\mu) < \mathsf{ht}(\lambda)}} \mathfrak{m}_{\mu}^{-1} \bigg|_{\lambda} = \prod_{n=0}^{N_{\lambda}} (1 - t^n e^{\lambda})^{m(\lambda, n)} \cdot \prod_{\substack{\mu \in Q^+ \\ \mathsf{ht}(\mu) < \mathsf{ht}(\lambda)}} \mathfrak{m}_{\mu}^{-1} \bigg|_{\lambda} = 0$$

Set  $\mathfrak{m}_0 = 1$ . Assume  $\operatorname{ht}(\lambda) > 0$ , and  $\mathfrak{m}_{\mu}$  known for  $\operatorname{ht}(\mu) < \operatorname{ht}(\lambda)$  $\mu \in Q^+_{\operatorname{im}}$ : from previous steps of the induction  $\mu \notin Q^+_{\operatorname{im}}$ : by computing real roots up to  $\operatorname{ht}(\lambda)$ 

The coefficient of 
$$e^{\lambda}$$
 in  $\prod_{\substack{\mu \in Q^+ \\ \operatorname{ht}(\mu) < \operatorname{ht}(\lambda)}} \mathfrak{m}_{\mu}^{-1}$  is a polynomial in  $t := m(\lambda, 0) + m(\lambda, 1)t + \cdots + m(\lambda, N_{\lambda})t^{N_{\lambda}}$ 

University of Queensland

Sac

- ロト - 同ト - ヨト - ヨト - ヨ

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|------------------------|------------|---------------------------|-------------|----------------------------|---------|
| 000000                 | 000        | 0000                      | 00          | 0000000                    | 0000    |

$$\mathfrak{m}_{\lambda}^{-1} \cdot \prod_{\substack{\mu \in Q^+ \\ \mathsf{ht}(\mu) < \mathsf{ht}(\lambda)}} \mathfrak{m}_{\mu}^{-1} \bigg|_{\lambda} = \prod_{n=0}^{N_{\lambda}} (1 - t^n e^{\lambda})^{m(\lambda, n)} \cdot \prod_{\substack{\mu \in Q^+ \\ \mathsf{ht}(\mu) < \mathsf{ht}(\lambda)}} \mathfrak{m}_{\mu}^{-1} \bigg|_{\lambda} = 0$$

Set  $\mathfrak{m}_0 = 1$ . Assume  $\operatorname{ht}(\lambda) > 0$ , and  $\mathfrak{m}_{\mu}$  known for  $\operatorname{ht}(\mu) < \operatorname{ht}(\lambda)$   $\mu \in Q_{\operatorname{im}}^+$ : from previous steps of the induction  $\mu \notin Q_{\operatorname{im}}^+$ : by computing real roots up to  $\operatorname{ht}(\lambda)$ The coefficient of  $e^{\lambda}$  in  $\prod_{\substack{\mu \in Q^+ \\ \operatorname{ht}(\mu) < \operatorname{ht}(\lambda)}} \mathfrak{m}_{\mu}^{-1}$  is a polynomial in t := $\mathfrak{m}(\lambda, 0) + \mathfrak{m}(\lambda, 1)t + \cdots + \mathfrak{m}(\lambda, N_{\lambda})t^{N_{\lambda}}$ 

University of Queensland

Sac

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|------------------------|------------|---------------------------|-------------|----------------------------|---------|
| 000000                 | 000        | 0000                      | 00          | 0000000                    | 0000    |

$$\mathfrak{m}_{\lambda}^{-1} \cdot \prod_{\substack{\mu \in Q^+ \\ \mathsf{ht}(\mu) < \mathsf{ht}(\lambda)}} \mathfrak{m}_{\mu}^{-1} \bigg|_{\lambda} = \prod_{n=0}^{N_{\lambda}} (1 - t^n e^{\lambda})^{m(\lambda, n)} \cdot \prod_{\substack{\mu \in Q^+ \\ \mathsf{ht}(\mu) < \mathsf{ht}(\lambda)}} \mathfrak{m}_{\mu}^{-1} \bigg|_{\lambda} = 0$$

Set  $\mathfrak{m}_0 = 1$ . Assume  $\operatorname{ht}(\lambda) > 0$ , and  $\mathfrak{m}_{\mu}$  known for  $\operatorname{ht}(\mu) < \operatorname{ht}(\lambda)$   $\mu \in Q_{\operatorname{im}}^+$ : from previous steps of the induction  $\mu \notin Q_{\operatorname{im}}^+$ : by computing real roots up to  $\operatorname{ht}(\lambda)$ The coefficient of  $e^{\lambda}$  in  $\prod_{\substack{\mu \in Q^+ \\ \operatorname{ht}(\mu) < \operatorname{ht}(\lambda)}} \mathfrak{m}_{\mu}^{-1}$  is a polynomial in t := $\mathfrak{m}_{(\lambda, 0)} + \mathfrak{m}_{(\lambda, 1)} t + \dots + \mathfrak{m}_{(\lambda, N_{\lambda})} t^{N_{\lambda}}$ 

Sac

Motivation 000 Definition and properties 0000 Affine case

Results beyond affine type 0000000

Further 0000 00

#### Generalized Berman-Moody formula

**Theorem** [Muthiah-P-Whitehead] For all  $\lambda \in Q^+$ , we have:

$$m_{\lambda}(t) = \sum_{\kappa \mid \lambda} \mu\left(\lambda/\kappa\right) \left(\frac{\lambda}{\kappa}\right)^{-1} \sum_{\underline{\kappa} \in \mathsf{Par}(\kappa)} (-1)^{|\underline{\kappa}|} \frac{B(\underline{\kappa})}{|\underline{\kappa}|} \prod_{i=1}^{|\underline{\kappa}|} P_{\kappa_i}(t^{\lambda/\kappa})$$

For t = 0 recovers the Berman-Moody formula for mult(λ) = m<sub>λ</sub>(0)
λ, κ ∈ Q<sup>+</sup>, λ = k ⋅ κ, then κ|λ, λ/κ = k ∈ Z, μ(λ/κ) Möbius function
Par(λ) vector partitions of λ, |κ|, B(κ)

•  $P_{\kappa_i}(t^{\lambda/\kappa})=P_{\kappa_i}(t^k)$  given in terms of Kostant partitions of  $\kappa_i\in Q^+.$ 

$$\blacksquare \frac{\Delta_{cu}}{\mathsf{m}\Delta_{t,v}}$$
 logarithm, differential operator  $\sum_{i} e^{\alpha_{i}} \frac{\partial}{\partial e^{\alpha_{i}}}$ , Möbius transform

 $\blacksquare$  For any  $\mu \in Q^+, \, \mu 
eq 0 \; P_\mu(1) = 0$  .

Motivation 000 Definition and properties 0000 Affine case

Results beyond affine type 0000000

Further 0000 00

# Generalized Berman-Moody formula

**Theorem** [Muthiah-P-Whitehead] For all  $\lambda \in Q^+$ , we have:

$$m_{\lambda}(t) = \sum_{\kappa \mid \lambda} \mu\left(\lambda/\kappa\right) \left(\frac{\lambda}{\kappa}\right)^{-1} \sum_{\underline{\kappa} \in \mathsf{Par}(\kappa)} (-1)^{|\underline{\kappa}|} \frac{B(\underline{\kappa})}{|\underline{\kappa}|} \prod_{i=1}^{|\underline{\kappa}|} P_{\kappa_i}(t^{\lambda/\kappa})$$

For t = 0 recovers the Berman-Moody formula for mult(λ) = m<sub>λ</sub>(0)
λ, κ ∈ Q<sup>+</sup>, λ = k ⋅ κ, then κ|λ, λ/κ = k ∈ Z, μ(λ/κ) Möbius function
Par(λ) vector partitions of λ, |κ|, B(κ)

- ${\sf P}_{\kappa_i}(t^{\lambda/\kappa})={\sf P}_{\kappa_i}(t^k)$  given in terms of Kostant partitions of  $\kappa_i\in Q^+.$
- **a**  $\frac{\Delta_{ca}}{m\Delta_{t,ca}}$  logarithm, differential operator  $\sum e^{lpha t} rac{\partial}{\partial e^{lpha t}}$ , Möbius transform
- $\blacksquare$  For any  $\mu \in Q^+$ ,  $\mu 
  eq 0 \; P_\mu(1) = 0$

Sac

イロト イポト イラト イラト

Motivation 000 Definition and properties 0000 Affine case

Results beyond affine type 0000000

Further 0000 00

# Generalized Berman-Moody formula

**Theorem** [Muthiah-P-Whitehead] For all  $\lambda \in Q^+$ , we have:

$$m_{\lambda}(t) = \sum_{\kappa \mid \lambda} \mu\left(\lambda/\kappa\right) \left(\frac{\lambda}{\kappa}\right)^{-1} \sum_{\underline{\kappa} \in \mathsf{Par}(\kappa)} (-1)^{|\underline{\kappa}|} \frac{B(\underline{\kappa})}{|\underline{\kappa}|} \prod_{i=1}^{|\underline{\kappa}|} P_{\kappa_i}(t^{\lambda/\kappa})$$

For t = 0 recovers the Berman-Moody formula for mult(λ) = m<sub>λ</sub>(0)
 λ, κ ∈ Q<sup>+</sup>, λ = k ⋅ κ, then κ|λ, λ/κ = k ∈ Z, μ(λ/κ) Möbius function
 Par(λ) vector partitions of λ, |κ|, B(κ)

•  $P_{\kappa_i}(t^{\lambda/\kappa}) = P_{\kappa_i}(t^k)$  given in terms of Kostant partitions of  $\kappa_i \in Q^+$ .

**a** 
$$rac{\Delta_{lpha}}{\mathfrak{m}\Delta_{\mathrm{tre}}}$$
 logarithm, differential operator  $\sum e^{lpha_1} rac{\partial}{\partial e^{lpha_1}}$ , Möbius transform

 $\blacksquare$  For any  $\mu \in Q^+$ ,  $\mu 
eq 0$   $P_\mu(1)=0$  .

Motivation 000 Definition and properties 0000 Affine case

Results beyond affine type 0000000

Further 0000 00

# Generalized Berman-Moody formula

**Theorem** [Muthiah-P-Whitehead] For all  $\lambda \in Q^+$ , we have:

$$m_{\lambda}(t) = \sum_{\kappa \mid \lambda} \mu\left(\lambda/\kappa\right) \left(\frac{\lambda}{\kappa}\right)^{-1} \sum_{\underline{\kappa} \in \mathsf{Par}(\kappa)} (-1)^{|\underline{\kappa}|} \frac{B(\underline{\kappa})}{|\underline{\kappa}|} \prod_{i=1}^{|\underline{\kappa}|} P_{\kappa_i}(t^{\lambda/\kappa})$$

- For t = 0 recovers the Berman-Moody formula for mult(λ) = m<sub>λ</sub>(0)
   λ, κ ∈ Q<sup>+</sup>, λ = k ⋅ κ, then κ|λ, λ/κ = k ∈ Z, μ(λ/κ) Möbius function
- $Par(\lambda)$  vector partitions of  $\lambda$ ,  $|\underline{\kappa}|$ ,  $B(\underline{\kappa})$

•  $P_{\kappa_i}(t^{\lambda/\kappa}) = P_{\kappa_i}(t^k)$  given in terms of Kostant partitions of  $\kappa_i \in Q^+$ .

$$= \frac{\Delta_{re}}{\mathfrak{m}\Delta_{tre}} \log_{re} \operatorname{logarithm}, \operatorname{differential operator} \sum_{i} e^{\alpha_{i}} \frac{\partial}{\partial e^{\alpha_{i}}}, \operatorname{Möbius transform}$$

 $\blacksquare$  For any  $\mu \in Q^+$ ,  $\mu 
eq 0 \; P_\mu(1) = 0$ 

Sac

Motivation 000 Definition and properties 0000 Affine case

Results beyond affine type 0000000 Further 0000 00

# Generalized Berman-Moody formula

**Theorem** [Muthiah-P-Whitehead] For all  $\lambda \in Q^+$ , we have:

$$m_{\lambda}(t) = \sum_{\kappa \mid \lambda} \mu\left(\lambda/\kappa\right) \left(\frac{\lambda}{\kappa}\right)^{-1} \sum_{\underline{\kappa} \in \mathsf{Par}(\kappa)} (-1)^{|\underline{\kappa}|} \frac{B(\underline{\kappa})}{|\underline{\kappa}|} \prod_{i=1}^{|\underline{\kappa}|} P_{\kappa_i}(t^{\lambda/\kappa})$$

For t = 0 recovers the Berman-Moody formula for mult( $\lambda$ ) =  $m_{\lambda}(0)$ 

- $\lambda, \kappa \in Q^+, \lambda = k \cdot \kappa$ , then  $\kappa | \lambda, \frac{\lambda}{\kappa} = k \in \mathbb{Z}, \mu(\lambda/\kappa)$  Möbius function
- $Par(\lambda)$  vector partitions of  $\lambda$ ,  $|\underline{\kappa}|$ ,  $B(\underline{\kappa})$
- $P_{\kappa_i}(t^{\lambda/\kappa}) = P_{\kappa_i}(t^k)$  given in terms of Kostant partitions of  $\kappa_i \in Q^+$ .

 $\blacksquare \frac{\Delta_{re}}{\mathfrak{m}\Delta_{t,re}} \text{ logarithm, differential operator } \sum_{i} e^{\alpha_{i}} \frac{\partial}{\partial e^{\alpha_{i}}}, \text{ Möbius transform}$ 

• For any  $\mu \in Q^+$ ,  $\mu \neq 0$   $P_{\mu}(1) = 0$ 

オロトオ母トオヨトオヨト ヨークタウ

Motivation 000 Definition and properties 0000 Affine case

Results beyond affine type 0000000 Further 0000 00

# Generalized Berman-Moody formula

**Theorem** [Muthiah-P-Whitehead] For all  $\lambda \in Q^+$ , we have:

$$m_{\lambda}(t) = \sum_{\kappa \mid \lambda} \mu\left(\lambda/\kappa\right) \left(\frac{\lambda}{\kappa}\right)^{-1} \sum_{\underline{\kappa} \in \mathsf{Par}(\kappa)} (-1)^{|\underline{\kappa}|} \frac{B(\underline{\kappa})}{|\underline{\kappa}|} \prod_{i=1}^{|\underline{\kappa}|} P_{\kappa_i}(t^{\lambda/\kappa})$$

• For t = 0 recovers the Berman-Moody formula for mult( $\lambda$ ) =  $m_{\lambda}(0)$ 

- $\lambda, \kappa \in Q^+, \lambda = k \cdot \kappa$ , then  $\kappa | \lambda, \frac{\lambda}{\kappa} = k \in \mathbb{Z}, \mu(\lambda/\kappa)$  Möbius function
- Par( $\lambda$ ) vector partitions of  $\lambda$ ,  $|\underline{\kappa}|$ ,  $B(\underline{\kappa})$
- $P_{\kappa_i}(t^{\lambda/\kappa}) = P_{\kappa_i}(t^k)$  given in terms of Kostant partitions of  $\kappa_i \in Q^+$ .

•  $\frac{\Delta_{re}}{\mathfrak{m}\Delta_{t,re}}$  logarithm, differential operator  $\sum_{i} e^{\alpha_{i}} \frac{\partial}{\partial e^{\alpha_{i}}}$ , Möbius transform

For any  $\mu \in Q^+$ ,  $\mu \neq 0$   $P_{\mu}(1) = 0$ 

Motivation 000 Definition and properties 0000 Affine case

Results beyond affine type 0000000 Further 0000 00

# Generalized Berman-Moody formula

**Theorem** [Muthiah-P-Whitehead] For all  $\lambda \in Q^+$ , we have:

$$m_{\lambda}(t) = \sum_{\kappa \mid \lambda} \mu\left(\lambda/\kappa\right) \left(\frac{\lambda}{\kappa}\right)^{-1} \sum_{\underline{\kappa} \in \mathsf{Par}(\kappa)} (-1)^{|\underline{\kappa}|} \frac{B(\underline{\kappa})}{|\underline{\kappa}|} \prod_{i=1}^{|\underline{\kappa}|} P_{\kappa_i}(t^{\lambda/\kappa})$$

• For t = 0 recovers the Berman-Moody formula for mult( $\lambda$ ) =  $m_{\lambda}(0)$ 

- $\lambda, \kappa \in Q^+, \lambda = k \cdot \kappa$ , then  $\kappa | \lambda, \frac{\lambda}{\kappa} = k \in \mathbb{Z}, \mu(\lambda/\kappa)$  Möbius function
- Par( $\lambda$ ) vector partitions of  $\lambda$ ,  $|\underline{\kappa}|$ ,  $B(\underline{\kappa})$
- $P_{\kappa_i}(t^{\lambda/\kappa}) = P_{\kappa_i}(t^k)$  given in terms of Kostant partitions of  $\kappa_i \in Q^+$ .
- $\frac{\Delta_{\text{re}}}{\mathfrak{m}\Delta_{t,\text{re}}}$  logarithm, differential operator  $\sum_{i} e^{\alpha_{i}} \frac{\partial}{\partial e^{\alpha_{i}}}$ , Möbius transform
- $\blacksquare$  For any  $\mu \in Q^+$ ,  $\mu 
  eq 0 \ P_\mu(1) = 0$

University of Queensland

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|------------------------|------------|---------------------------|-------------|----------------------------|---------|
| 000000                 | 000        | 0000                      | 00          | 000000                     | 0000    |

**Theorem** [Muthiah-P-Whitehead] For  $\lambda \in Q_{im}^+$ ,  $m_\lambda(t) \neq 0 \Leftrightarrow \lambda \in \Phi_{im}$ . If  $\Phi_1 \subseteq \Phi$  root subsystem,  $Q_1 \subseteq Q$ ,  $\mathfrak{m}_1$ ,  $\mathfrak{m}$ ; then  $\mathfrak{m}|_{Q_1} = \mathfrak{m}_1$ . If  $\Phi_1, \Phi_2 \subseteq \Phi$ , simple roots  $\Delta_1 \perp \Delta_2$ , then  $\mathfrak{m} = \mathfrak{m}_1\mathfrak{m}_2$ . If  $\lambda \in Q_{im}^+ \setminus \Phi_{im}$  antidominant, then  $\operatorname{Supp}_\Delta \lambda$  disconnected. **Theorem** [Muthiah-P-Whitehead] For  $\lambda \in Q_{im}^+$ ,  $(1-t)^2 | m_\lambda(t)$ . Use Generalized Berman-Moody formula Observation:  $\lambda \in Q_{im}^+$  as sum over  $\Phi_{re}$  has at least two terms. For any  $\mu \in Q^+$ ,  $\mu \neq 0$ :  $P_\mu(1) = 0$ 

# $m_{\lambda}(t) = \sum_{\kappa \mid \lambda} \mu\left(\lambda/\kappa\right) \left(\frac{\lambda}{\kappa}\right)^{-1} \sum_{\underline{\kappa} \in \mathsf{Par}(\kappa)} (-1)^{|\underline{\kappa}|} \frac{B(\underline{\kappa})}{|\underline{\kappa}|} \prod_{i=1}^{|\underline{\kappa}|} P_{\kappa_i}(t^{\lambda/\kappa})$

Image: A matching of the second se

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type |
|------------------------|------------|---------------------------|-------------|----------------------------|
| 000000                 | 000        | 0000                      | 00          | 000000                     |

#### **Theorem** [Muthiah-P-Whitehead] For $\lambda \in Q_{im}^+$ , $m_{\lambda}(t) \neq 0 \Leftrightarrow \lambda \in \Phi_{im}$ .

If  $\Phi_1 \subseteq \Phi$  root subsystem,  $Q_1 \subseteq Q$ ,  $\mathfrak{m}_1$ ,  $\mathfrak{m}$ ; then  $\mathfrak{m}|_{Q_1} = \mathfrak{m}_1$ .

- If  $\Phi_1, \Phi_2 \subseteq \Phi$ , simple roots  $\Delta_1 \perp \Delta_2$ , then  $\mathfrak{m} = \mathfrak{m}_1 \mathfrak{m}_2$ .
- If  $\lambda \in Q_{im}^+ \setminus \Phi_{im}$  antidominant, then  $\operatorname{Supp}_{\Delta} \lambda$  disconnected.

**Theorem** [Muthiah-P-Whitehead] For  $\lambda \in Q^+_{ ext{im}}$ ,  $(1-t)^2 | m_\lambda(t)$ .

- Use Generalized Berman-Moody formula
- Observation:  $\lambda \in Q_{im}^+$  as sum over  $\Phi_{re}$  has at least two terms.
- For any  $\mu \in Q^+$ ,  $\mu \neq 0$  :  $P_{\mu}(1) = 0$

$$m_{\lambda}(t) = \sum_{\kappa \mid \lambda} \mu\left(\lambda/\kappa\right) \left(\frac{\lambda}{\kappa}\right)^{-1} \sum_{\underline{\kappa} \in \mathsf{Par}(\kappa)} (-1)^{|\underline{\kappa}|} \frac{B(\underline{\kappa})}{|\underline{\kappa}|} \prod_{i=1}^{|\underline{\kappa}|} P_{\kappa_i}(t^{\lambda/\kappa})$$

Sac

イロト イヨト イミト イミト 二日

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further |
|------------------------|------------|---------------------------|-------------|----------------------------|---------|
| 000000                 | 000        | 0000                      | 00          | 000000                     | 0000    |

**Theorem** [Muthiah-P-Whitehead] For  $\lambda \in Q_{im}^+$ ,  $m_{\lambda}(t) \neq 0 \Leftrightarrow \lambda \in \Phi_{im}$ .

- If  $\Phi_1 \subseteq \Phi$  root subsystem,  $Q_1 \subseteq Q$ ,  $\mathfrak{m}_1$ ,  $\mathfrak{m}$ ; then  $\mathfrak{m}|_{Q_1} = \mathfrak{m}_1$ .
- If  $\Phi_1, \Phi_2 \subseteq \Phi$ , simple roots  $\Delta_1 \perp \Delta_2$ , then  $\mathfrak{m} = \mathfrak{m}_1 \mathfrak{m}_2$ .
- If  $\lambda \in Q_{im}^+ \setminus \Phi_{im}$  antidominant, then  $\text{Supp}_{\Delta} \lambda$  disconnected.

**Theorem** [Muthiah-P-Whitehead] For  $\lambda \in Q_{im}^+$ ,  $(1-t)^2 | m_\lambda(t)$ . • Use Generalized Berman-Moody formula • Observation:  $\lambda \in Q_{im}^+$  as sum over  $\Phi_{re}$  has at least two terms. • For any  $\mu \in Q^+$ ,  $\mu \neq 0$ :  $P_\mu(1) = 0$ 

$$m_{\lambda}(t) = \sum_{\kappa \mid \lambda} \mu\left(\lambda/\kappa\right) \left(\frac{\lambda}{\kappa}\right)^{-1} \sum_{\underline{\kappa} \in \mathsf{Par}(\kappa)} (-1)^{|\underline{\kappa}|} \frac{B(\underline{\kappa})}{|\underline{\kappa}|} \prod_{i=1}^{|\underline{\kappa}|} P_{\kappa_i}(t^{\lambda/\kappa})$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further    |
|------------------------|------------|---------------------------|-------------|----------------------------|------------|
| 0000000                | 000        | 0000                      | 00          | 000000                     | 0000<br>00 |

**Theorem** [Muthiah-P-Whitehead] For  $\lambda \in Q_{im}^+$ ,  $m_{\lambda}(t) \neq 0 \Leftrightarrow \lambda \in \Phi_{im}$ .

- If  $\Phi_1 \subseteq \Phi$  root subsystem,  $Q_1 \subseteq Q$ ,  $\mathfrak{m}_1$ ,  $\mathfrak{m}$ ; then  $\mathfrak{m}|_{Q_1} = \mathfrak{m}_1$ .
- If  $\Phi_1, \Phi_2 \subseteq \Phi$ , simple roots  $\Delta_1 \perp \Delta_2$ , then  $\mathfrak{m} = \mathfrak{m}_1 \mathfrak{m}_2$ .
- If  $\lambda \in Q_{im}^+ \setminus \Phi_{im}$  antidominant, then  $\operatorname{Supp}_{\Delta} \lambda$  disconnected.

**Theorem** [Muthiah-P-Whitehead] For  $\lambda \in Q^+_{ ext{im}}$ ,  $(1-t)^2 | m_\lambda(t)$ .

Use Generalized Berman-Moody formula

• Observation:  $\lambda \in Q_{im}^+$  as sum over  $\Phi_{re}$  has at least two terms.

• For any  $\mu \in Q^+$ ,  $\mu 
eq 0$  :  $P_\mu(1) = 0$ 

$$m_{\lambda}(t) = \sum_{\kappa \mid \lambda} \mu\left(\lambda/\kappa\right) \left(\frac{\lambda}{\kappa}\right)^{-1} \sum_{\underline{\kappa} \in \mathsf{Par}(\kappa)} (-1)^{|\underline{\kappa}|} \frac{B(\underline{\kappa})}{|\underline{\kappa}|} \prod_{i=1}^{|\underline{\kappa}|} P_{\kappa_i}(t^{\lambda/\kappa})$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further    |
|------------------------|------------|---------------------------|-------------|----------------------------|------------|
| 000000                 | 000        | 0000                      | 00          | 000000                     | 0000<br>00 |

**Theorem** [Muthiah-P-Whitehead] For  $\lambda \in Q_{im}^+$ ,  $m_{\lambda}(t) \neq 0 \Leftrightarrow \lambda \in \Phi_{im}$ .

- If  $\Phi_1 \subseteq \Phi$  root subsystem,  $Q_1 \subseteq Q$ ,  $\mathfrak{m}_1$ ,  $\mathfrak{m}$ ; then  $\mathfrak{m}|_{Q_1} = \mathfrak{m}_1$ .
- If  $\Phi_1, \Phi_2 \subseteq \Phi$ , simple roots  $\Delta_1 \perp \Delta_2$ , then  $\mathfrak{m} = \mathfrak{m}_1 \mathfrak{m}_2$ .
- If  $\lambda \in Q_{im}^+ \setminus \Phi_{im}$  antidominant, then  $\operatorname{Supp}_{\Delta} \lambda$  disconnected.

**Theorem** [Muthiah-P-Whitehead] For  $\lambda \in Q^+_{ ext{im}}$ ,  $(1-t)^2 | m_\lambda(t)$ .

- Use Generalized Berman-Moody formula
- Observation:  $\lambda \in \mathcal{Q}_{im}^+$  as sum over  $\Phi_{re}$  has at least two terms.
- lacksquare For any  $\mu\in Q^+$ ,  $\mu
  eq 0:P_\mu(1)=0$

$$m_{\lambda}(t) = \sum_{\kappa \mid \lambda} \mu\left(\lambda/\kappa\right) \left(\frac{\lambda}{\kappa}\right)^{-1} \sum_{\underline{\kappa} \in \mathsf{Par}(\kappa)} (-1)^{|\underline{\kappa}|} \frac{B(\underline{\kappa})}{|\underline{\kappa}|} \prod_{i=1}^{|\underline{\kappa}|} P_{\kappa_i}(t^{\lambda/\kappa})$$

オロトオ母トオヨトオヨト ヨークタウ

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further    |
|------------------------|------------|---------------------------|-------------|----------------------------|------------|
| 000000                 | 000        | 0000                      | 00          | 000000                     | ●000<br>○○ |

Examples

#### An illustration...

$$\chi_{\lambda}(t) = \frac{m_{\lambda}(t)}{(1-t)^2} = \frac{\sum_{i=0}^{N_{\lambda}} m(\lambda, n) \cdot t^n}{(1-t)^2}$$

Using the Generalized Petersen algorithm, compute this for the hyperbolic root systems with Cartan matrices

$$\begin{bmatrix} 2 & -3 \\ -2 & 2 \end{bmatrix}, \begin{bmatrix} 2 & -3 \\ -3 & 2 \end{bmatrix} \text{ and } \begin{bmatrix} 2 & -2 & 0 \\ -2 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

University of Queensland

<ロト < 部 ト < 三 ト < 三 ト 三 の < ()</p>
| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further     |
|------------------------|------------|---------------------------|-------------|----------------------------|-------------|
| 0000000                | 000        | 0000                      | 00          | 000000                     | <b>0000</b> |
| Examples               |            |                           |             |                            |             |

#### An illustration...

$$\chi_{\lambda}(t) = \frac{m_{\lambda}(t)}{(1-t)^2} = \frac{\sum_{i=0}^{N_{\lambda}} m(\lambda, n) \cdot t^n}{(1-t)^2}$$

Using the Generalized Petersen algorithm, compute this for the hyperbolic root systems with Cartan matrices

$$\begin{bmatrix} 2 & -3 \\ -2 & 2 \end{bmatrix}, \begin{bmatrix} 2 & -3 \\ -3 & 2 \end{bmatrix} \text{ and } \begin{bmatrix} 2 & -2 & 0 \\ -2 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

University of Queensland

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Anna Puskás

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further    |
|------------------------|------------|---------------------------|-------------|----------------------------|------------|
| 000000                 | 000        | 0000                      | 00          | 0000000                    | ●000<br>○○ |

### An illustration...

$$\chi_{\lambda}(t) = \frac{m_{\lambda}(t)}{(1-t)^2} = \frac{\sum_{i=0}^{N_{\lambda}} m(\lambda, n) \cdot t^n}{(1-t)^2}$$

Using the Generalized Petersen algorithm, compute this for the hyperbolic root systems with Cartan matrices

$$\begin{bmatrix} 2 & -3 \\ -2 & 2 \end{bmatrix}, \begin{bmatrix} 2 & -3 \\ -3 & 2 \end{bmatrix} \text{ and } \begin{bmatrix} 2 & -2 & 0 \\ -2 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}.$$

University of Queensland

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further    |
|------------------------|------------|---------------------------|-------------|----------------------------|------------|
| 000000                 | 000        | 0000                      | 00          | 0000000                    | ●000<br>○○ |

### An illustration...

$$\chi_{\lambda}(t) = \frac{m_{\lambda}(t)}{(1-t)^2} = \frac{\sum_{i=0}^{N_{\lambda}} m(\lambda, n) \cdot t^n}{(1-t)^2}$$

Using the Generalized Petersen algorithm, compute this for the hyperbolic root systems with Cartan matrices

$$\begin{bmatrix} 2 & -3 \\ -2 & 2 \end{bmatrix}, \begin{bmatrix} 2 & -3 \\ -3 & 2 \end{bmatrix} \text{ and } \begin{bmatrix} 2 & -2 & 0 \\ -2 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}.$$

University of Queensland

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further           |
|------------------------|------------|---------------------------|-------------|----------------------------|-------------------|
| 0000000                | 000        | 0000                      | 00          | 0000000                    | <b>0000</b><br>00 |

### An illustration...

$$\chi_{\lambda}(t) = \frac{m_{\lambda}(t)}{(1-t)^2} = \frac{\sum_{i=0}^{N_{\lambda}} m(\lambda, n) \cdot t^n}{(1-t)^2}$$

Using the Generalized Petersen algorithm, compute this for the hyperbolic root systems with Cartan matrices

$$\begin{bmatrix} 2 & -3 \\ -2 & 2 \end{bmatrix}, \begin{bmatrix} 2 & -3 \\ -3 & 2 \end{bmatrix} \text{ and } \begin{bmatrix} 2 & -2 & 0 \\ -2 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}.$$

University of Queensland

| Preview and Background | Motivation | Definition and properties | Affine case | Results beyond affine type | Further    |
|------------------------|------------|---------------------------|-------------|----------------------------|------------|
| 000000                 | 000        | 0000                      | 00          | 000000                     | ●000<br>○○ |

### An illustration...

$$\chi_{\lambda}(t) = \frac{m_{\lambda}(t)}{(1-t)^2} = \frac{\sum_{i=0}^{N_{\lambda}} m(\lambda, n) \cdot t^n}{(1-t)^2}$$

Using the Generalized Petersen algorithm, compute this for the hyperbolic root systems with Cartan matrices

$$\begin{bmatrix} 2 & -3 \\ -2 & 2 \end{bmatrix}, \begin{bmatrix} 2 & -3 \\ -3 & 2 \end{bmatrix} \text{ and } \begin{bmatrix} 2 & -2 & 0 \\ -2 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}.$$

University of Queensland

Preview and Background 0000000

Motivation 000 Definition and properties

Affine case

Results beyond affine type 0000000

Further

Examples

 $\chi_{\lambda}(t)$ , Cartan matrix  $\begin{vmatrix} 2 & -3 \\ -2 & 2 \end{vmatrix}$  $\lambda \qquad \chi_{\lambda}(t)$ (1,1) 1 (2,2) -t+1(3,2)  $t^2 + 0t + 2$  $(3,3) -t^3 - 2t + 2$  $(4,3) \quad t^4 - t^3 + 2t^2 - 3t + 3$ (4, 4)  $-t^5 + t^4 - 2t^3 + 3t^2 - 6t + 3$ (5, 4)  $t^6 - 2t^5 + 4t^4 - 6t^3 + 9t^2 - 9t + 6$  $(5,5) \quad -t^7 + t^6 - 4t^5 + 6t^4 - 10t^3 + 13t^2 - 13t + 7$  $(6,4) t^6 - 4t^5 + 5t^4 - 8t^3 + 11t^2 - 13t + 6$ . . . . . . (10, 9) $t^{16} - 7t^{15} + 29t^{14} - 91t^{13} + 248t^{12} - 584t^{11} + 1197t^{10} -$  $2170t^9 + 3505t^8 - 5039t^7 + 6437t^6 - 7253t^5 + 7042t^4 -$  $5618t^3 + 3405t^2 - 1372t + 272$ 

Preview and Background 0000000 Motivation 000 Definition and properties

Affine case

Results beyond affine type 0000000 Further 0000 00

Examples

 $\chi_{\lambda}(t)$ , Cartan matrix  $\begin{vmatrix} 2 & -3 \\ -3 & 2 \end{vmatrix}$  $egin{array}{ccc} \lambda & \chi_\lambda(t) \ (1,1) & 1 \end{array}$ (2,2) -2t+1(2,3)  $t^2 - t + 2$ (3,3)  $-2t^3+3t^2-4t+3$ (3,4)  $t^4 - 3t^3 + 6t^2 - 6t + 4$ (4, 4)  $-2t^5 + 7t^4 - 12t^3 + 17t^2 - 16t + 6$ (4,5)  $t^6 - 5t^5 + 15t^4 - 26t^3 + 30t^2 - 23t + 9$  $(4,6) t^6 - 8t^5 + 19t^4 - 31t^3 + 36t^2 - 28t + 9$  $-2t^7 + 9t^6 - 30t^5 + 58t^4 - 82t^3 + 77t^2 - 50t + 16$ (5, 5). . . . . . (10, 9) $t^{16} - 15t^{15} + 135t^{14} - 811t^{13} + 3535t^{12} - 11729t^{11} +$  $30615t^{10} - 64282t^9 + 110096t^8 - 154852t^7 + 178868t^6 -$  $168420t^{5} + 127110t^{4} - 74539t^{3} + 32094t^{2} - 9070t + 1267$ 

| Preview and Background              | Motivation<br>000     | Definition and properties | Affine cas<br>00 | Results beyond affine type |
|-------------------------------------|-----------------------|---------------------------|------------------|----------------------------|
| Examples                            |                       |                           |                  |                            |
|                                     |                       | 2 -2                      | ٥٦               |                            |
| $\chi_{\lambda}(t)$ , Cartan matrix |                       | ( -2 2 -                  | -1               |                            |
|                                     |                       | 0 -1                      | 2                |                            |
| λ                                   | $\gamma_{\lambda}(t)$ |                           | ) v              | ,                          |

<ロト 4 回 ト 4 三 ト 4 三 ト 一 三 の Q ()</p>

University of Queensland

Further 0000

| Preview and Background        | Motivation<br>000 | Definition and properties | Affine case<br>00 | Results beyond affine type | Further |
|-------------------------------|-------------------|---------------------------|-------------------|----------------------------|---------|
| Further Questions and Remarks |                   |                           |                   |                            |         |

**Conjecture** The polynomials  $\chi_{\lambda}$  have alternating sign coefficients in rank two hyperbolic type.

**Problem** Interpret all coefficients of  $\chi_{\lambda}$  in terms of the Kac-Moody Lie algebra.

**Problem** Give upper bounds for the degree and coefficients of  $\chi_{\lambda}(t)$ .

**Question** Relationship of  $m_{\lambda}(t)$  and Kac polynomials?

**Question** What is the Dolbeault cohomology of Kac-Moody flag varieties? (A two-parameter generalization of m.)

| Preview and Background        | Motivation<br>000 | Definition and properties<br>0000 | Affine case<br>00 | Results beyond affine type | Further |
|-------------------------------|-------------------|-----------------------------------|-------------------|----------------------------|---------|
| Further Questions and Remarks |                   |                                   |                   |                            |         |

## **Conjecture** The polynomials $\chi_{\lambda}$ have alternating sign coefficients in rank two hyperbolic type.

**Problem** Interpret all coefficients of  $\chi_{\lambda}$  in terms of the Kac-Moody Lie algebra.

**Problem** Give upper bounds for the degree and coefficients of  $\chi_{\lambda}(t)$ .

**Question** Relationship of  $m_{\lambda}(t)$  and Kac polynomials?

**Question** What is the Dolbeault cohomology of Kac-Moody flag varieties? (A two-parameter generalization of m.)



| Preview and Background        | Motivation<br>000 | Definition and properties | Affine case<br>OO | Results beyond affine type | Further |
|-------------------------------|-------------------|---------------------------|-------------------|----------------------------|---------|
| Further Questions and Remarks |                   |                           |                   |                            |         |

**Conjecture** The polynomials  $\chi_{\lambda}$  have alternating sign coefficients in rank two hyperbolic type.

# **Problem** Interpret all coefficients of $\chi_{\lambda}$ in terms of the Kac-Moody Lie algebra.

**Problem** Give upper bounds for the degree and coefficients of  $\chi_{\lambda}(t)$ .

**Question** Relationship of  $m_{\lambda}(t)$  and Kac polynomials?

**Question** What is the Dolbeault cohomology of Kac-Moody flag varieties? (A two-parameter generalization of m.)

Sac

| Preview and Background        | Motivation<br>000 | Definition and properties | Affine case<br>OO | Results beyond affine type | Further<br>○○○○ |
|-------------------------------|-------------------|---------------------------|-------------------|----------------------------|-----------------|
| Further Questions and Remarks |                   |                           |                   |                            |                 |

**Conjecture** The polynomials  $\chi_{\lambda}$  have alternating sign coefficients in rank two hyperbolic type.

**Problem** Interpret all coefficients of  $\chi_{\lambda}$  in terms of the Kac-Moody Lie algebra.

**Problem** Give upper bounds for the degree and coefficients of  $\chi_{\lambda}(t)$ .

**Question** Relationship of  $m_{\lambda}(t)$  and Kac polynomials?

**Question** What is the Dolbeault cohomology of Kac-Moody flag varieties? (A two-parameter generalization of m.)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

| Preview and Background        | Motivation<br>000 | Definition and properties | Affine case<br>OO | Results beyond affine type | Further<br>○○○○ |
|-------------------------------|-------------------|---------------------------|-------------------|----------------------------|-----------------|
| Further Questions and Remarks |                   |                           |                   |                            |                 |

**Conjecture** The polynomials  $\chi_{\lambda}$  have alternating sign coefficients in rank two hyperbolic type.

**Problem** Interpret all coefficients of  $\chi_{\lambda}$  in terms of the Kac-Moody Lie algebra.

**Problem** Give upper bounds for the degree and coefficients of  $\chi_{\lambda}(t)$ .

**Question** Relationship of  $m_{\lambda}(t)$  and Kac polynomials?

**Question** What is the Dolbeault cohomology of Kac-Moody flag varieties? (A two-parameter generalization of **m**.)

オロトオ母トオヨトオヨト ヨークタウ

| Preview and Background        | Motivation<br>000 | Definition and properties | Affine case<br>00 | Results beyond affine type | Further |
|-------------------------------|-------------------|---------------------------|-------------------|----------------------------|---------|
| Further Questions and Remarks |                   |                           |                   |                            |         |

**Conjecture** The polynomials  $\chi_{\lambda}$  have alternating sign coefficients in rank two hyperbolic type.

**Problem** Interpret all coefficients of  $\chi_{\lambda}$  in terms of the Kac-Moody Lie algebra.

**Problem** Give upper bounds for the degree and coefficients of  $\chi_{\lambda}(t)$ .

**Question** Relationship of  $m_{\lambda}(t)$  and Kac polynomials?

**Question** What is the Dolbeault cohomology of Kac-Moody flag varieties? (A two-parameter generalization of  $\mathfrak{m}$ .)

オロトオ母トオヨトオヨト ヨークタウ

| Preview and Background        | Motivation | Definition and properties | Affine case | Results beyond affine type | Further            |
|-------------------------------|------------|---------------------------|-------------|----------------------------|--------------------|
| 0000000                       | 000        | 0000                      | 00          | 000000                     | 0000<br><b>0</b> 0 |
| Further Questions and Remarks |            |                           |             |                            |                    |

Thank you!

