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Schubert calculus

The Grassmannian: k-dimensional planes in Cn.

Basis for cohomology using Schubert varieties.

Represented by Schur functions sλ(x) such that λ inside a
k × (n − k) rectangle.

Many well-known formulas, including sum over semistandard
tableaux, the Jacobi–Trudi formula, and using 5-vertex integrable
lattice models.
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5-vertex model for Schur functions
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K-theory

We want a richer structure: K-theory

Schubert varieties again lead to a basis.

Represented by (symmetric) Grothendieck polynomials Gλ(x;β).

Theorem (Motegi–Sakai, 2013)

The 5-vertex model with L-matrix

a1 a2 b2 c1 c2

0 0

0

0

z 1 1

1
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z 1 1

0

0

z 1 0

0

1

z 0 1

1

0

z

1 1 z 1 1 + βz

is integrable and the partition function is Gλ(x;β).
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Dual Grothendieck polynomials

There is an inner product defined by 〈sλ, sµ〉 = δλµ.

The dual Grothendieck polynomials gλ(x, β) are the symmetric
functions dual to Gλ(x;β) under this inner product.

gλ(x, β) is the sum over reverse plane partitions (RPPs), fillings of λ
such that rows and columns weakly increase.

The weight is now the number of columns containing i and β
measures how far from being a semistandard tableau.

Theorem (Lam–Pylyavskyy, 2008)

There exists bijection between RPPs and a semistandard tableau (P,E )
of shape µ and λ/µ such that entries in row i of E are at most i . The
tableau E is called an elegant tableau.
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Refinement

We want to keep track of which row a duplicate box occurs in.

We replace βk with monomials in t = (t1, . . . , t`−1); introduced by
[Galashin–Grinberg–Liu, 2016].

Corresponds to twt(E) under the Lam–Pylyavskyy bijection (see
[Yeliussizov, 2017]).

Definition

The refined dual Grothendieck polynomial is

gλ(x; t) =
∑
µ⊆λ

eµλ(t)sµ(x),

where eµλ(t) =
∑

E twt(E) is over elegant tableau E of shape λ/µ.
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Flagged Schur functions

[Lascoux–Naruse, 2014] showed that gλ(x, 1) is given by summing
over flagged semistandard tableaux where row i is bounded by n + i .

[Chen–Li–Louck, 2002] showed these are given by noninteresecting
lattice paths.

We transform this into the 5-vertex model by extending the bottom
points.

We have a jagged boundary with the end point for λi down `(λ)− i
steps from the top from flagging condition.

The x in the rectangular portion; the t in the jagged portion.

Theorem

The partition function of this jagged 5-vertex is a refined dual
Grothendieck polynomial.
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Lattice path construction

Example

Let n = 5, λ = 4322, and µ = 41. The shaded portion below is the
elegant tableau.

ũ1ũ2ũ3

x1 x1

x3

x4

ũ1 = u1

v1

x3

t1 t1

u2

v2t1

t2

u3

v3

t3 t3

u4

v4

7−→

1 1 3 4

3 1 1

1 2

3 3
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Elegant tableaux

Proof.

Notice that the jagged portion precisely corresponds to the elegant
tableau.

Corollary

The refined dual Grothendiecks are given by Lascoux’s multi-Schur
functions, and are specializations of certain Schubert polynomials (and
Demazure characters/key polynomials).
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Jacobi–Trudi formulas

By using the Lindström–Gessel–Viennot (LGV) lemma, our model yields
the following Jacobi–Trudi formula for dual Grothendiecks:

Corollary

gλ(x; t) = det
[
hλi+j−i (x, t1, . . . , ti−1)

]n
i,j=1

From the multi-Schur definition, using a refined version of the algebraic
computations in [Lascoux–Naruse, 2014], we have a dual Jacobi–Trudi
formula:

Corollary

gλ(x; t) = det
[
eλ′

i +j−i (x, t1, . . . , tλ′
i−1)

]n
i,j=1
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Cauchy-type identity

Corollary

Let λ† be the complement of λ in m` and t† = (t`−1, . . . , t1):

sm`(x, t, y) =
∑
λ⊆m`

gλ(x; t)gλ†(y; t†).

Example

x1

y1

x2

y2

t1

t2

t3

u1

v1

u2

v2

u3

v3

u4

v4

7→

x1 x1 x1 x1 x2

x2 t1 t1 t1

t1

t3

,

y1 y1 y1 y1 y1

y2 y2 y2 t3 t3

t3 t3

t2

where y1 < y2 < t3 < t2 < t1.



Refined dual Grothendiecks
The lattice model

Results

Identities
Symmetries
Further directions

Cauchy-type identity

Corollary

Let λ† be the complement of λ in m` and t† = (t`−1, . . . , t1):

sm`(x, t, y) =
∑
λ⊆m`

gλ(x; t)gλ†(y; t†).

Example

x1

y1

x2

y2

t1

t2

t3

u1

v1

u2

v2

u3

v3

u4

v4

7→

x1 x1 x1 x1 x2

x2 t1 t1 t1

t1

t3

,

y1 y1 y1 y1 y1

y2 y2 y2 t3 t3

t3 t3

t2

where y1 < y2 < t3 < t2 < t1.



Refined dual Grothendiecks
The lattice model

Results

Identities
Symmetries
Further directions

Dual Grothendieck expansion

By utilizing the same idea, we obtain the following corollaries.

Corollary (Branching rule)

gλ(x, γ; t) =
∑
µ⊆λ

γλ1−µ1 tλ2−µ2

1 · · · tλ`−µ`

`−1 gµ(x; γ, t)

Corollary

sν(x, t̃) =
∑
λ⊆µ

pλν (̃t)gλ(x; t),

where t̃ = (t1, . . . , tm) and pλν (̃t) are semistandard skew tableau of shape
λ/µ with max entry m and all entries in row i being at least i .
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Equality on rectangles

Note for λ = m`, the upper right paths are fixed to being vertical:

Corollary

sm`(x, t) = gm`(x; t).

We note that the symmetry comes from the Yang–Baxter equation. We
can extend this to the following.

Corollary

If λi = λi+1, then gλ(x; t) is symmetric in ti−1 and ti , where t0 = xn.

Example

x1

x2

x3

x4

x5

t1

t2

t3

ũ1

v1

ũ2

v2

ũ3

v3

ũ4

v4

7−→

1 1 3 5

2 3 1 1

4 1

2 3
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ũ3

v3

ũ4
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Another 5-vertex model

If we instead use the usual bijection between semistandard tableaux and
Gelfand–Tsetlin patterns, we can obtain the same formulas using the
Motegi–Sakai model at β = 0.

Corollary

∑
λ⊆m`

∏̀
i=1

tm−λi

i gλ(x; t) =
∏̀
i=1

tmi
∏

1≤i<j≤n

1

(xi − xj)(t−1
i − t−1

j )

× det

[
(xi t
−1
j )m+n − 1

xi t
−1
j − 1

]n
i,j=1

∣∣∣∣∣
t`+1=···=tn=∞

.

Corollary (Yeliussizov, 2019, Thm 5.2(iv))

∑
`(λ)≤`

∏̀
i=1

t−λi

i gλ(x; t) =
n∏

i=1

∏̀
j=1

1

1− t−1
j xi

=
n∏

i=1

∏̀
j=1

tj
tj − xi

.
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Extra parameter

The Motegi–Sakai model has the extra parameter β.

The resulting partition function has the same symmetries and is
Grothendieck positive.

What is the geometric interpretation of these polynomials?

What are their structure coefficients?

What are the corresponding dual symmetric functions?

What is their combinatorial interpretation?
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Probability theory

gλ(x; 1) related to last passage percolation and TASEP on a line
[Yeliussizov, 2019].

Can be extended to t case and gλ describes the transition
probabilities.

Leads to a natural definition of skew refined dual Grothendieck
polynomials.

Using algebraic approach of [Johansson, 2010], Jacobi–Trudi
formulas can be shown (independent results; see also [Kim, 2020]).

Recovers result that a last passage percolation probability is given by
the Schur measure [Johansson, 2000] and [Baik–Rains, 2001].

Corollary

gλ(x;β) =
1

(2πi)`

∮
· · ·
∮ ∏

i<j

(zj − zi )(1− βzj − βzi )

(1− βzj)

∏`
i=1 zλi+`−i

i∏`
i,m=1(zi − xm)

dz1 · · · dz`
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