Refined dual Grothendieck polynomials from integrability

Travis Scrimshaw

Joint work with Kohei Motegi

The University of Queensland

September 29th, 2020

Table of Contents

- Refined dual Grothendiecks
 - Symmetric Grothendiecks
 - Dual Grothendiecks
 - Refined dual Grothendiecks
- 2 The lattice model
 - Nonintersecting lattice paths
 - Combinatorial interpretation
- Results
 - Identities
 - Symmetries
 - Further directions

Outline

- Refined dual Grothendiecks
 - Symmetric Grothendiecks
 - Dual Grothendiecks
 - Refined dual Grothendiecks
- 2 The lattice model
- Results

• The Grassmannian: k-dimensional planes in \mathbb{C}^n .

- The Grassmannian: k-dimensional planes in \mathbb{C}^n .
- Basis for cohomology using Schubert varieties.

- The Grassmannian: k-dimensional planes in \mathbb{C}^n .
- Basis for cohomology using Schubert varieties.
- Represented by Schur functions $s_{\lambda}(\mathbf{x})$ such that λ inside a $k \times (n-k)$ rectangle.

- The Grassmannian: k-dimensional planes in \mathbb{C}^n .
- Basis for cohomology using Schubert varieties.
- Represented by Schur functions $s_{\lambda}(\mathbf{x})$ such that λ inside a $k \times (n-k)$ rectangle.
- Many well-known formulas, including sum over semistandard tableaux, the Jacobi-Trudi formula, and using 5-vertex integrable lattice models.

5-vertex model for Schur functions

5-vertex model for Schur functions

• We want a richer structure: K-theory

- We want a richer structure: K-theory
- Schubert varieties again lead to a basis.

- We want a richer structure: K-theory
- Schubert varieties again lead to a basis.
- Represented by (symmetric) Grothendieck polynomials $G_{\lambda}(\mathbf{x}; \beta)$.

- We want a richer structure: K-theory
- Schubert varieties again lead to a basis.
- Represented by (symmetric) Grothendieck polynomials $G_{\lambda}(\mathbf{x}; \beta)$.

Theorem (Motegi–Sakai, 2013)

The 5-vertex model with L-matrix

is integrable and the partition function is $G_{\lambda}(\mathbf{x}; \beta)$.

• There is an inner product defined by $\langle s_{\lambda}, s_{\mu} \rangle = \delta_{\lambda\mu}$.

- There is an inner product defined by $\langle s_{\lambda}, s_{\mu} \rangle = \delta_{\lambda\mu}$.
- The dual Grothendieck polynomials $g_{\lambda}(\mathbf{x}, \beta)$ are the symmetric functions dual to $G_{\lambda}(\mathbf{x}; \beta)$ under this inner product.

- There is an inner product defined by $\langle s_{\lambda}, s_{\mu} \rangle = \delta_{\lambda\mu}$.
- The dual Grothendieck polynomials $g_{\lambda}(\mathbf{x}, \beta)$ are the symmetric functions dual to $G_{\lambda}(\mathbf{x}; \beta)$ under this inner product.
- $g_{\lambda}(\mathbf{x}, \beta)$ is the sum over *reverse plane partitions (RPPs)*, fillings of λ such that rows and columns weakly increase.

- There is an inner product defined by $\langle s_{\lambda}, s_{\mu} \rangle = \delta_{\lambda\mu}$.
- The dual Grothendieck polynomials $g_{\lambda}(\mathbf{x}, \beta)$ are the symmetric functions dual to $G_{\lambda}(\mathbf{x}; \beta)$ under this inner product.
- $g_{\lambda}(\mathbf{x}, \beta)$ is the sum over *reverse plane partitions (RPPs)*, fillings of λ such that rows and columns weakly increase.
- The weight is now the number of *columns* containing i and β measures how far from being a semistandard tableau.

- There is an inner product defined by $\langle s_{\lambda}, s_{\mu} \rangle = \delta_{\lambda\mu}$.
- The dual Grothendieck polynomials $g_{\lambda}(\mathbf{x}, \beta)$ are the symmetric functions dual to $G_{\lambda}(\mathbf{x}; \beta)$ under this inner product.
- $g_{\lambda}(\mathbf{x}, \beta)$ is the sum over *reverse plane partitions (RPPs)*, fillings of λ such that rows and columns weakly increase.
- The weight is now the number of *columns* containing i and β measures how far from being a semistandard tableau.

Theorem (Lam-Pylyavskyy, 2008)

There exists bijection between RPPs and a semistandard tableau (P,E) of shape μ and λ/μ such that entries in row i of E are at most i. The tableau E is called an elegant tableau.

Refinement

• We want to keep track of which row a duplicate box occurs in.

Refinement

- We want to keep track of which row a duplicate box occurs in.
- We replace β^k with monomials in $\mathbf{t} = (t_1, \dots, t_{\ell-1})$; introduced by [Galashin–Grinberg–Liu, 2016].

Refinement

- We want to keep track of which row a duplicate box occurs in.
- We replace β^k with monomials in $\mathbf{t} = (t_1, \dots, t_{\ell-1})$; introduced by [Galashin–Grinberg–Liu, 2016].
- Corresponds to t^{wt(E)} under the Lam-Pylyavskyy bijection (see [Yeliussizov, 2017]).

- We want to keep track of which row a duplicate box occurs in.
- We replace β^k with monomials in $\mathbf{t} = (t_1, \dots, t_{\ell-1})$; introduced by [Galashin–Grinberg–Liu, 2016].
- Corresponds to t^{wt(E)} under the Lam-Pylyavskyy bijection (see [Yeliussizov, 2017]).

Definition

The refined dual Grothendieck polynomial is

$$g_{\lambda}(\mathbf{x};\mathbf{t}) = \sum_{\mu \subset \lambda} e^{\mu} \lambda(\mathbf{t}) s_{\mu}(\mathbf{x}),$$

where $e^{\mu}\lambda(\mathbf{t}) = \sum_{E} \mathbf{t}^{\text{wt}(E)}$ is over elegant tableau E of shape λ/μ .

Outline

- Refined dual Grothendiecks
- 2 The lattice model
 - Nonintersecting lattice paths
 - Combinatorial interpretation
- 3 Results

• [Lascoux–Naruse, 2014] showed that $g_{\lambda}(\mathbf{x}, 1)$ is given by summing over flagged semistandard tableaux where row i is bounded by n + i.

- [Lascoux–Naruse, 2014] showed that $g_{\lambda}(\mathbf{x}, 1)$ is given by summing over flagged semistandard tableaux where row i is bounded by n + i.
- [Chen-Li-Louck, 2002] showed these are given by noninteresecting lattice paths.

- [Lascoux–Naruse, 2014] showed that $g_{\lambda}(\mathbf{x}, 1)$ is given by summing over flagged semistandard tableaux where row i is bounded by n + i.
- [Chen-Li-Louck, 2002] showed these are given by noninteresecting lattice paths.
- We transform this into the 5-vertex model by extending the bottom points.

- [Lascoux–Naruse, 2014] showed that $g_{\lambda}(\mathbf{x}, 1)$ is given by summing over flagged semistandard tableaux where row i is bounded by n + i.
- [Chen-Li-Louck, 2002] showed these are given by noninteresecting lattice paths.
- We transform this into the 5-vertex model by extending the bottom points.
- We have a jagged boundary with the end point for λ_i down $\ell(\lambda) i$ steps from the top from flagging condition.

- [Lascoux–Naruse, 2014] showed that $g_{\lambda}(\mathbf{x}, 1)$ is given by summing over flagged semistandard tableaux where row i is bounded by n + i.
- [Chen-Li-Louck, 2002] showed these are given by noninteresecting lattice paths.
- We transform this into the 5-vertex model by extending the bottom points.
- We have a jagged boundary with the end point for λ_i down $\ell(\lambda) i$ steps from the top from flagging condition.
- The x in the rectangular portion; the t in the jagged portion.

- [Lascoux–Naruse, 2014] showed that $g_{\lambda}(\mathbf{x}, 1)$ is given by summing over flagged semistandard tableaux where row i is bounded by n + i.
- [Chen-Li-Louck, 2002] showed these are given by noninteresecting lattice paths.
- We transform this into the 5-vertex model by extending the bottom points.
- We have a jagged boundary with the end point for λ_i down $\ell(\lambda) i$ steps from the top from flagging condition.
- The x in the rectangular portion; the t in the jagged portion.

Theorem

The partition function of this jagged 5-vertex is a refined dual Grothendieck polynomial.

Lattice path construction

Example

Let n=5, $\lambda=4322$, and $\mu=41$. The shaded portion below is the elegant tableau.

Elegant tableaux

Proof.

Notice that the jagged portion precisely corresponds to the elegant tableau.

Elegant tableaux

Proof.

Notice that the jagged portion precisely corresponds to the elegant tableau.

Corollary

The refined dual Grothendiecks are given by Lascoux's multi-Schur functions, and are specializations of certain Schubert polynomials (and Demazure characters/key polynomials).

Outline

- Refined dual Grothendiecks
- 2 The lattice model
- Results
 - Identities
 - Symmetries
 - Further directions

Jacobi-Trudi formulas

By using the Lindström–Gessel–Viennot (LGV) lemma, our model yields the following Jacobi–Trudi formula for dual Grothendiecks:

Jacobi-Trudi formulas

By using the Lindström–Gessel–Viennot (LGV) lemma, our model yields the following Jacobi–Trudi formula for dual Grothendiecks:

Corollary

$$g_{\lambda}(\mathbf{x};\mathbf{t}) = \det ig[h_{\lambda_i+j-i}(\mathbf{x},t_1,\ldots,t_{i-1})ig]_{i,j=1}^n$$

Jacobi-Trudi formulas

By using the Lindström–Gessel–Viennot (LGV) lemma, our model yields the following Jacobi–Trudi formula for dual Grothendiecks:

Corollary

$$g_{\lambda}(\mathbf{x};\mathbf{t}) = \det \left[h_{\lambda_i+j-i}(\mathbf{x},t_1,\ldots,t_{i-1})\right]_{i,j=1}^n$$

From the multi-Schur definition, using a refined version of the algebraic computations in [Lascoux–Naruse, 2014], we have a dual Jacobi–Trudi formula:

Jacobi-Trudi formulas

By using the Lindström–Gessel–Viennot (LGV) lemma, our model yields the following Jacobi–Trudi formula for dual Grothendiecks:

Corollary

$$g_{\lambda}(\mathbf{x};\mathbf{t}) = \det[h_{\lambda_i+j-i}(\mathbf{x},t_1,\ldots,t_{i-1})]_{i,j=1}^n$$

From the multi-Schur definition, using a refined version of the algebraic computations in [Lascoux–Naruse, 2014], we have a dual Jacobi–Trudi formula:

Corollary

$$g_{\lambda}(\mathbf{x};\mathbf{t}) = \det \left[e_{\lambda'_i + j - i}(\mathbf{x}, t_1, \dots, t_{\lambda'_i - 1}) \right]_{i,j=1}^n$$

Cauchy-type identity

Corollary

Let λ^{\dagger} be the complement of λ in m^{ℓ} and $\mathbf{t}^{\dagger}=(t_{\ell-1},\ldots,t_1)$:

$$s_{m^{\ell}}(\mathbf{x},\mathbf{t},\mathbf{y}) = \sum_{\lambda \subseteq m^{\ell}} g_{\lambda}(\mathbf{x};\mathbf{t}) g_{\lambda^{\dagger}}(\mathbf{y};\mathbf{t}^{\dagger}).$$

Cauchy-type identity

Corollary

Let λ^{\dagger} be the complement of λ in m^{ℓ} and $\mathbf{t}^{\dagger} = (t_{\ell-1}, \dots, t_1)$:

$$s_{m^\ell}(\mathbf{x},\mathbf{t},\mathbf{y}) = \sum_{\lambda \subseteq m^\ell} g_\lambda(\mathbf{x};\mathbf{t}) g_{\lambda^\dagger}(\mathbf{y};\mathbf{t}^\dagger).$$

Example

where $y_1 < y_2 < t_3 < t_2 < t_1$.

Dual Grothendieck expansion

By utilizing the same idea, we obtain the following corollaries.

Dual Grothendieck expansion

By utilizing the same idea, we obtain the following corollaries.

Corollary (Branching rule)

$$g_{\lambda}(\mathsf{x},\gamma;\mathsf{t}) = \sum_{\mu\subseteq\lambda} \gamma^{\lambda_1-\mu_1} t_1^{\lambda_2-\mu_2} \cdots t_{\ell-1}^{\lambda_\ell-\mu_\ell} g_{\mu}(\mathsf{x};\gamma,\mathsf{t})$$

Dual Grothendieck expansion

By utilizing the same idea, we obtain the following corollaries.

Corollary (Branching rule)

$$g_{\lambda}(\mathbf{x},\gamma;\mathbf{t}) = \sum_{\mu \subset \lambda} \gamma^{\lambda_1 - \mu_1} t_1^{\lambda_2 - \mu_2} \cdots t_{\ell-1}^{\lambda_\ell - \mu_\ell} g_{\mu}(\mathbf{x};\gamma,\mathbf{t})$$

Corollary

$$s_{
u}(\mathbf{x},\widetilde{\mathbf{t}}) = \sum_{\lambda \subset \mu} p_{
u}^{\lambda}(\widetilde{\mathbf{t}}) g_{\lambda}(\mathbf{x};\mathbf{t}),$$

where $\widetilde{\mathbf{t}} = (t_1, \dots, t_m)$ and $p_{\nu}^{\lambda}(\widetilde{\mathbf{t}})$ are semistandard skew tableau of shape λ/μ with max entry m and all entries in row i being at least i.

Note for $\lambda=m^\ell$, the upper right paths are fixed to being vertical:

Note for $\lambda = m^{\ell}$, the upper right paths are fixed to being vertical:

Corollary

$$s_{m^{\ell}}(\mathbf{x},\mathbf{t})=g_{m^{\ell}}(\mathbf{x};\mathbf{t}).$$

Note for $\lambda = m^{\ell}$, the upper right paths are fixed to being vertical:

Corollary

$$s_{m\ell}(\mathbf{x},\mathbf{t})=g_{m\ell}(\mathbf{x};\mathbf{t}).$$

We note that the symmetry comes from the Yang–Baxter equation. We can extend this to the following.

Note for $\lambda = m^{\ell}$, the upper right paths are fixed to being vertical:

Corollary

$$s_{m\ell}(\mathbf{x},\mathbf{t})=g_{m\ell}(\mathbf{x};\mathbf{t}).$$

We note that the symmetry comes from the Yang-Baxter equation. We can extend this to the following.

Corollary

If $\lambda_i = \lambda_{i+1}$, then $g_{\lambda}(\mathbf{x}; \mathbf{t})$ is symmetric in t_{i-1} and t_i , where $t_0 = x_n$.

Note for $\lambda = m^{\ell}$, the upper right paths are fixed to being vertical:

Corollary

$$s_{m\ell}(\mathbf{x},\mathbf{t})=g_{m\ell}(\mathbf{x};\mathbf{t}).$$

We note that the symmetry comes from the Yang–Baxter equation. We can extend this to the following.

Corollary

If $\lambda_i = \lambda_{i+1}$, then $g_{\lambda}(\mathbf{x}; \mathbf{t})$ is symmetric in t_{i-1} and t_i , where $t_0 = x_n$.

Example

Another 5-vertex model

If we instead use the usual bijection between semistandard tableaux and Gelfand–Tsetlin patterns, we can obtain the same formulas using the Motegi–Sakai model at $\beta=0$.

Another 5-vertex model

If we instead use the usual bijection between semistandard tableaux and Gelfand–Tsetlin patterns, we can obtain the same formulas using the Motegi–Sakai model at $\beta=0$.

Corollary

$$\sum_{\lambda \subseteq m^{\ell}} \prod_{i=1}^{\ell} t_i^{m-\lambda_i} g_{\lambda}(\mathbf{x}; \mathbf{t}) = \prod_{i=1}^{\ell} t_i^m \prod_{1 \le i < j \le n} \frac{1}{(x_i - x_j)(t_i^{-1} - t_j^{-1})} \times \det \left[\frac{(x_i t_j^{-1})^{m+n} - 1}{x_i t_j^{-1} - 1} \right]_{i,j=1}^{n} \bigg|_{t_{\ell+1} = \dots = t_n = \infty}.$$

Another 5-vertex model

If we instead use the usual bijection between semistandard tableaux and Gelfand–Tsetlin patterns, we can obtain the same formulas using the Motegi–Sakai model at $\beta=0$.

Corollary

$$\begin{split} \sum_{\lambda \subseteq m^{\ell}} \prod_{i=1}^{\ell} t_i^{m-\lambda_i} g_{\lambda}(\mathbf{x}; \mathbf{t}) &= \prod_{i=1}^{\ell} t_i^m \prod_{1 \le i < j \le n} \frac{1}{(x_i - x_j)(t_i^{-1} - t_j^{-1})} \\ &\times \det \left[\frac{(x_i t_j^{-1})^{m+n} - 1}{x_i t_j^{-1} - 1} \right]_{i,j=1}^{n} \bigg|_{t_{\ell+1} = \dots = t_n = \infty}. \end{split}$$

Corollary (Yeliussizov, 2019, Thm 5.2(iv))

$$\sum_{\ell(\lambda) < \ell} \prod_{i=1}^{\ell} t_i^{-\lambda_i} g_{\lambda}(\mathbf{x}; \mathbf{t}) = \prod_{i=1}^{n} \prod_{j=1}^{\ell} \frac{1}{1 - t_j^{-1} x_i} = \prod_{i=1}^{n} \prod_{j=1}^{\ell} \frac{t_j}{t_j - x_i}.$$

• The Motegi–Sakai model has the extra parameter β .

- The Motegi–Sakai model has the extra parameter β .
- The resulting partition function has the same symmetries and is Grothendieck positive.

- The Motegi–Sakai model has the extra parameter β .
- The resulting partition function has the same symmetries and is Grothendieck positive.
- What is the geometric interpretation of these polynomials?

- The Motegi–Sakai model has the extra parameter β .
- The resulting partition function has the same symmetries and is Grothendieck positive.
- What is the geometric interpretation of these polynomials?
- What are their structure coefficients?

- The Motegi–Sakai model has the extra parameter β .
- The resulting partition function has the same symmetries and is Grothendieck positive.
- What is the geometric interpretation of these polynomials?
- What are their structure coefficients?
- What are the corresponding dual symmetric functions?

- The Motegi–Sakai model has the extra parameter β .
- The resulting partition function has the same symmetries and is Grothendieck positive.
- What is the geometric interpretation of these polynomials?
- What are their structure coefficients?
- What are the corresponding dual symmetric functions?
- What is their combinatorial interpretation?

• $g_{\lambda}(\mathbf{x}; 1)$ related to last passage percolation and TASEP on a line [Yeliussizov, 2019].

- $g_{\lambda}(\mathbf{x};1)$ related to last passage percolation and TASEP on a line [Yeliussizov, 2019].
- Can be extended to **t** case and g_{λ} describes the transition probabilities.

- $g_{\lambda}(\mathbf{x}; 1)$ related to last passage percolation and TASEP on a line [Yeliussizov, 2019].
- Can be extended to **t** case and g_{λ} describes the transition probabilities.
- Leads to a natural definition of skew refined dual Grothendieck polynomials.

- $g_{\lambda}(\mathbf{x}; 1)$ related to last passage percolation and TASEP on a line [Yeliussizov, 2019].
- Can be extended to **t** case and g_{λ} describes the transition probabilities.
- Leads to a natural definition of skew refined dual Grothendieck polynomials.
- Using algebraic approach of [Johansson, 2010], Jacobi-Trudi formulas can be shown (independent results; see also [Kim, 2020]).

- $g_{\lambda}(\mathbf{x}; 1)$ related to last passage percolation and TASEP on a line [Yeliussizov, 2019].
- Can be extended to **t** case and g_{λ} describes the transition probabilities.
- Leads to a natural definition of skew refined dual Grothendieck polynomials.
- Using algebraic approach of [Johansson, 2010], Jacobi-Trudi formulas can be shown (independent results; see also [Kim, 2020]).
- Recovers result that a last passage percolation probability is given by the Schur measure [Johansson, 2000] and [Baik–Rains, 2001].

- $g_{\lambda}(\mathbf{x}; 1)$ related to last passage percolation and TASEP on a line [Yeliussizov, 2019].
- Can be extended to **t** case and g_{λ} describes the transition probabilities.
- Leads to a natural definition of skew refined dual Grothendieck polynomials.
- Using algebraic approach of [Johansson, 2010], Jacobi-Trudi formulas can be shown (independent results; see also [Kim, 2020]).
- Recovers result that a last passage percolation probability is given by the Schur measure [Johansson, 2000] and [Baik–Rains, 2001].

Corollary

$$g_{\lambda}(\mathbf{x};\beta) = \frac{1}{(2\pi i)^{\ell}} \oint \cdots \oint \prod_{i < j} \frac{(z_j - z_i)(1 - \beta z_j - \beta z_i)}{(1 - \beta z_j)} \frac{\prod_{i=1}^{\ell} z_i^{\lambda_i + \ell - i}}{\prod_{i,m=1}^{\ell} (z_i - x_m)} dz_1 \cdots dz_{\ell}$$

Thank you!

References

- Jang Soo Kim. Jacobi–Trudi formula for flagged refined dual stable Grothendieck polynomials. arχiv: 2008.12000. 2020.
- Alain Lascoux and Hiroshi Naruse. Finite sum Cauchy identity for dual Grothendieck polynomials. *Proc. Japan Acad. Ser. A Math.* Sci., 90(7):87–91, 2014.
- Damir Yeliussizov. Duality and deformations of stable Grothendieck polynomials. J. Algebraic Combin., 45(1):295–344, 2017.
- Damir Yeliussizov. Random plane partitions and corner distributions. $ar\chi iv$: 1910.13378. 2019.
- Pavel Galashin, Darij Grinberg, and Gaku Liu. Refined dual stable Grothendieck polynomials and generalized Bender–Knuth involutions. *Electron. J. Combin.*, 23(3):Paper 3.14, 28, 2016.
- Kohei Motegi and TS: Refined dual Grothendieck polynomials, integrability, and the Schur measure. In preparation.