Junichi Shiraishi (The University of Tokyo)

Title: Some conjectures concerning non-stationary Ruijsenaars functions

Abstract: My talk is based on the collaboration with Edwin Langmann and Masatoshi Noumi. I define a certain formal power series $f^{\widehat{\mathfrak{gl}}_N}(x,p|s,\kappa|q,t)$ (called the non-stationary Ruijsenaars functions), show some basic properties, and present several conjectures [S][LNS].

The asymptotically free solution [NS] (which I call $f^{\mathfrak{gl}_N}(x|s|q,t)$) to the Macdonald difference equations of type A give the Euler characteristics of the Laumon spaces [BFS]. In the same way, the non-stationary Ruijsenaars functions $f^{\widehat{\mathfrak{gl}}_N}(x,p|s,\kappa|q,t)$ represent the the Euler characteristics of the affine Laumon spaces [FFNR]. Based on the screened vertex operators associated with the affine screening operators, $f^{\widehat{\mathfrak{gl}}_N}(x,p|s,\kappa|q,t)$ can be obtained as a certain correlation functions of the screened vertex operators.

The Schur limit (i.e. $t \to q$) can be stated as follows. When the parameters s and κ are suitably chosen, the limit $t \to q$ of $f^{\widehat{\mathfrak{gl}}_N}(x, p|s, \kappa|q, q/t)$ gives us the dominant integrable characters of $\widehat{\mathfrak{sl}}_N$ multiplied by $1/(p^N; p^N)_{\infty}$ (*i.e.* the $\widehat{\mathfrak{gl}}_1$ character).

Some basic conjectures concerning the non-stationary Ruijsenaars function $f^{\hat{\mathfrak{gl}}_N}(x,p|s,\kappa|q,t)$ are as follows.

(1) We have the duality conjectures for the suitably normalized version $\varphi^{\widehat{\mathfrak{gl}}_N}(x,p|s,\kappa|q,t): \varphi^{\widehat{\mathfrak{gl}}_N}(x,p|s,\kappa|q,t) = \varphi^{\widehat{\mathfrak{gl}}_N}(s,\kappa|x,p|q,t)$ (bispectral duality) and $\varphi^{\widehat{\mathfrak{gl}}_N}(x,p|s,\kappa|q,t) = \varphi^{\widehat{\mathfrak{gl}}_N}(x,p|s,\kappa|q,q/t)$ (Poincare' duality).

(2) An important special case appears in the very singular (essentially singular) limit $\kappa \to 1$. It is expected that one can normalize $\widehat{f^{\mathfrak{gl}}}_N(x,p|s,\kappa|q,t)$ in such a way that the limit $\kappa \to 1$ exists, and the limit $f^{\mathrm{st.}\,\widehat{\mathfrak{gl}}}_N(x,p|s|q,t)$ gives us the eigenfunction of the elliptic Ruijsenaars operator.

(3) To explore some candidates of eigenvalue equations which $f^{\widehat{\mathfrak{gl}}_N}(x,p|s,\kappa|q,t)$ should satisfy, I introduce a new operator $\mathfrak{T}^{\widehat{\mathfrak{gl}}_N}(x,p|q,t,\kappa)$. This is obtained by extending a similar operator $\mathfrak{T}^{\mathfrak{gl}_N}(x,p|q,t)$ having $f^{\mathfrak{gl}_N}(x|s|q,t)$ as the eigensunctions. Both $\mathfrak{T}^{\mathfrak{gl}_N}(x,p|q,t)$ and $\mathfrak{T}^{\widehat{\mathfrak{gl}}_N}(x,p|q,t,\kappa)$ are operators containing $q^{\frac{1}{2}\Delta}$ (where Δ is the odinary Laplacian), and seem new object (even in the Macdonald case).

[[]BFS] A. Braverman, M. Finkelberg and J. Shiraishi, Macdonald polynomials, Laumon spaces and perverse coherent sheaves, Perspectives in representation theory, 23–41, Contemp. Math., 610, Amer. Math. Soc., Providence, RI, 2014.

[[]FFNR] B. Feigin, M. Finkelberg, A. Negut and L. Rybnikov, Yangians and cohomology ring of Laumon spaces, Sel. Math. New. Ser. (2011) 17:573-607, DOI 10.1007/s00029-011-0059-x.

[[]LNS] E. Langmann, M. Noumi and J. Shiraishi, Basic properties of non-stationary Ruijsenaars functions, arXiv:2006.07171.

[[]NS] M. Noumi and J. Shiraishi, A direct approach to the bispectral problem for the Ruijsenaars-Macdonald q-difference operators, arXiv:1206.5364.

[[]S] J. Shiraishi, Affine Screening Operators, Affine Laumon Spaces, and Conjectures Concerning Non-Stationary Ruijsenaars Functions, J. of Int. Systems 4 (2019), xyz010.